Role of zinc oxide nanoparticles in alleviating sodium chloride-induced salt stress in sweet basil (Ocimum basilicum L.)

Syed Aiman Hasan Adnan Khan Mohd Irfan   

Open Access   

Published:  May 27, 2024

DOI: 10.7324/JABB.2024.188250
Abstract

In this study, we examined the role of zinc oxide nanoparticles (ZnO NPs) on the growth facet, photosynthetic attributes, lipid peroxidation, electrolyte leakage (EL), and antioxidant activity of basil plants following growth subjected to different levels of sodium chloride-induced salinity [1.0 (control), 2.0, 3.0, 4.0, and 5.0 deci Siemens per meter (dSm–1)]. The foliage of 30-day-old plants was sprayed with an aqueous solution of ZnO NPs [(1.5/2.0 parts per million (ppm)]. Treated plants sampled at 75 days after sowing showed a concentration-dependent response against salinity for all studied growth, photosynthetic attributes, and other biochemical parameters. All growth parameters decreased with increasing salt levels in the soil. However, a direct relationship was observed for lipid peroxidation, EL, and all antioxidant stress markers, and all these parameters increased with the increased salinity levels in the soil. Moreover, ZnO NPs alone (1.5 or 2.0 ppm) or as a follow-up treatment with salinity (2.0 dSm–1 + 1.5 or 2.0 ppm ZnO, 3.0 dSm–1 + 1.5 or 2.0 ppm ZnO, 4.0 dSm–1 + 1.5 or 2.0 ppm ZnO, and 5.0 dSm–1 + 1.5 or 2.0 ppm ZnO) enhanced all the growth and photosynthetic parameters and protected the plants against salinity by reflecting the enhanced activity of antioxidants and decreasing EL and lipid peroxidation. The results of this study confirmed the ameliorating role of ZnO NPs against salt stress and screened out an effective dose of ZnO NPs (2.0 ppm) for growing Ocimum basilicum plant species in saline soil.


Keyword:     Photosynthetic machinery Salinity Stress markers Sweet basil ZnO NPs


Citation:

Hasan SA, Khan A, Irfan M. Role of zinc oxide nanoparticles in alleviating sodium chloride-induced salt stress in sweet basil (Ocimum basilicum L.). J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.188250

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Raven PH. Plants make our existence possible. Plants People Planet. 2021;3:2–6.

https://doi.org/10.1002/ppp3.10173

2. Schaal B. Plants and people: our shared history and future. Plants People Planet. 2019;14–9. https://doi.org/10.1002/ppp3.12

3. Shah A, Niaz A, Ullah N, Rehman A, Akhlaq M, Zakir M, et al. Comparative study of heavy metals in soil and selected medicinal plants. J Chem. 2013;621265.

https://doi.org/10.1155/2013/621265

4. Tomar, O. Determination of some quality properties and antimicrobial activities of kombucha tea prepared with different berries. Turkish J Agri Forestry. 2023;47(2):252–62. https://doi. org/10.55730/1300-011X.3083

5. Almoshari Y. Medicinal plants used for dermatological disorders among the people of the kingdom of Saudi Arabia: a narrative review. Saudi J Biol Sci. 2022;29(6):103303. https://doi.org/10.1016/j.sjbs.2022.103303

6. Khair-ul-Bariyah S, Ahmed D, Ikram M. Ocimum basilicum: a review on phytochemical and pharmacological studies. Pak J Chem. 2012;2(2):78–85.

7. Celebi O, Fidan H, Iliev I, Petkova N, Dincheva I, Gandova V, et al. Chemical composition, biological activities, and surface tension properties of Melissa officinalis L. essential oil. Turkish J Agri Forestry. 2023;47(1):67–78.

https://doi.org/10.55730/1300-011X.3065

8. Ladwani AM, Salman M, Hameed AS. Chemical composition of Ocimum basilicum L. essential oil from different regions in the Kingdom of Saudi Arabia by using Gas chromatography mass spectrometer. J Med Plants Stud. 2018;6(1):14–9.

9. Dhama K, Sharun K, Gugjoo MB, Tiwari R, Alagawany M, Iqbal Yatoo M, et al. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Reviews Int. 2023;39:119–47. https://doi.org/10.1080/87559129.2021.1900230

10. Aminian AR, Mohebbati R, Boskabady MH. The effect of Ocimum basilicum L. and its main ingredients on respiratory disorders: an experimental, preclinical, and clinical review. Front Pharmacol. 2022;12:805391.

https://doi.org/10.3389/fphar.2021.805391

11. Teshome DT, Zharare GE, Naidoo S. The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front Plant Sci. 2020;11:601009. https://doi.org/10.3389/ fpls.2020.601009

12. Torabian S, Zahedi M, Khoshgoftarmanesh A. Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. J Agri Sci Tech. 2016;18(4):1013–25. http://dorl. net/dor/20.1001.1.16807073.2016.18.4.10.4

13. Torabian S, Zahedi M, Khoshgoftar AH. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr. 2016;39(2):172–80. https:// doi.org/10.1080/01904167.2015.1009107

14. Stavridou E, Hastings A, Webster RJ, Robson PRH. The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. GCB-Bioenergy. 2017;9(1):92–104. https://doi.org/10.1111/gcbb.12351

15. Yadav S, Irfan M, Ahmad A, Hayat S. Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol. 2011;32(5):667–85. PMID: 22319886

16. Adhanom OG. Salinity and sodicity hazard characterization in major irrigated areas and irrigation water sources, Northern Ethiopia. Cogent Food Agric. 2019;5(1):1673110.

https://doi.org/10.1080/23311 932.2019.1673110

17. Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol. 2019;10:2791. https://doi.org/10.3389/fmicb.2019.02791

18. El-Sabagh A, Islam MS, Skalicky M, Ali Raza M, Singh K, Anwar Hossain M, et al. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron. 2021;3:661932. https://doi.org/10.3389/fagro.2021.661932

19. Ioannou A, Gohari G, Papaphilippou P, Panahirad S, Akbari A, Dadpour MR, et al. Advanced nanomaterials in agriculture under a changing climate: the way to the future? Env Exp Bot. 2020;176:104048.

https://doi.org/10.1016/j.envexpbot.2020.104048

20. Mittal D, Kaur G, Singh P, Yadav K, Ali SA. Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol. 2020;2:579954. https://doi.org/10.3389/fnano.2020.579954

21. El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky EM, Babalghith AO, et al. Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Front Plant Sci. 2022;13:946717.

https://doi.org/10.3389/fpls.2022.946717

22. Alamdari S, Mirzaee O, Nasiri Jahroodi F, Tafreshi MJ, Ghamsari MS, Shik SS, et al. Green synthesis of multifunctional ZnO/ chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surf Interfaces. 2022;34:102349. https://doi.org/10.1016/j.surfin.2022.102349

23. Gadewar M, Prashanth GK, Babu MR, Dileep MS, Prashanth PA, Rao S, et al. Unlocking nature’s potential: green synthesis of ZnO nanoparticles and their multifaceted applications -a concise overview. J Saudi Chem Soc. 2024;28(1):101774. https://doi.org/10.1016/j.jscs.2023.101774

24. Alamdari S, Sasani Ghamsari M, Lee C, Han W, Park HH, Tafreshi MJ, et al. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl Sci. 2020;10(10):3620. https://doi.org/10.3390/app10103620

25. Elsamra RM, Masoud MS, Zidan AA, Zokm GM, Okbah MA. Green synthesis of nanostructured zinc oxide by Ocimum tenuiflorum extract: characterization, adsorption modeling, cytotoxic screening, and metal ions adsorption applications. Biomass Conversion Biorefinery. 2023;1–14. https://doi.org/10.1007/s13399-022-03709-1

26. Mazumder JA, Khan E, Perwez M, Gupta M, Kumar S, Raza K, et al. Exposure of biosynthesized nanoscale ZnO to Brassica juncea crop plant: morphological, biochemical and molecular aspects. Sci Rep. 2020;10(1):8531. https://doi.org/10.1038/s41598-020-65271-y

27. Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 2018;56:678– 86.

https://doi.org/10.1007/s11099-017-0717-0

28. Pooja, Munjal R, Bhaumik J, Kaur R. Role of zinc oxide nanoparticles in mitigation of drought and salinity. Int J Curr Microbiol App Sci. 2020;9(11):467–81.

29. Al-Qurainy F, Khan S, Alansi S, Nadeem M, Alshameri A, Gaafar AR, et al. Impact of phytomediated zinc oxide nanoparticles on growth and oxidative stress response of in vitro raised shoots of Ochradenus arabicus. Biomed Res Int. 2021;2021:6829806. https://doi.org/10.1155/2021/6829806

30. Sedghi M, Hadi M, Toluie SG. Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timisoara Ser Biol. 2013;16(2):73–8.

31. de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta- Videa JR, Gardea-Torresdey JL. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem. 2013;85:2161–74. https://doi.org/10.1351/pac-con-12-09-05

32. Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, et al. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in Eggplant (Solanum melongena L.). Plants (Basel). 2021;10(2):421. https://doi.org/10.3390/plants10020421

33. Faizan M, Hayat S. Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Polish J Natu Sci. 2019;34(6):87–105.

34. El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, et al. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol Environ Saf. 2021;225:112695. https://doi.org/10.1016/j.ecoenv.2021.112695

35. Sarkhosh S, Kahrizi D, Darvishi E, Tourang M, Haghighi-Mood S, Vahedi P, et al. Effect of zinc oxide nanoparticles (ZnO-NPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. J Nanomaterials. 2022;2022:1892759.

https://doi.org/10.1155/2022/1892759

36. Kolen?ík M, Ernst D, Komár M, Urík M, Šebesta M, Dobro?ka E, et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials (Basel). 2019;9(11):1559. https://doi.org/10.3390/nano9111559

37. Ahmed B, Syed A, Rizvi A, Shahid M, Bahkali AH, Khan MS, et al. Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM. Environ Pollut. 2021;269:116218. https://doi.org/10.1016/j.envpol.2020.116218

38. López Valencia, OM, Johansen K, Aragón Solorio BJL, Li T, Houborg R, Malbeteau Y, et al. Mapping groundwater abstractions from irrigated agriculture: big data, inverse modelling, and a satellite– model fusion approach. Hydrol Earth Syst Sci. 2020;24:5251–77. https://doi.org/10.5194/hess-24-5251-2020

39. Alnaser ZHA, Chowdhury SR, Razzak SA. Constructed wetlands for wastewater treatment in Saudi Arabia: opportunities and sustainability. Arab J Sci Eng. 2023;48:8801–17. https://doi.org/10.1007/s13369-022-07411-2

40. Pandey SK, Singh H. A simple, cost-effective method for leaf area estimation. J Bot. 2011;2011:658240. https://doi.org/10.1155/2011/658240

41. Mackinney G. Absorption of light by chlorophyll solutions. J Biol Chem. 1941;140(2):315–22. https://doi.org/10.1016/S0021-9258(18)51320-X

42. Sullivan CY, Ross WM. Selection for drought and heat resistance in grain sorghum. In: Mussel H, Staples RC, editors. Chapter 17, Stress physiology in crop plants. New York (NY): John Willy and Sons; 1979. p. 263–81.

43. Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Planta. 1991;83(3):463–8. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x

44. Chance B, Maehly AC. Assay of catalase and peroxidase. Methods Enzymol. 1955;2:764–75. https://doi.org/10.1016/S0076-6879(55)02300-8

45. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. https://doi.org/10.1016/0003-2697(71)90370-8

46. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7. https://doi.org/10.1007/BF00018060

47. Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 2006;57(5):1025–43. https://doi.org/10.1093/jxb/erj100

48. Alipour ZT. The effect of phosphorus and sulfur nanofertilizers on the growth and nutrition of Ocimum basilicum in response to salt stress. J Chem Health Risks. 2016;6(2):125–31. https://doi.org/10.22034/jchr.2016.544137

49. Caliskan O, Kurt D, Temizel KE, Odabas MS. Effect of salt stress and irrigation water on growth and development of sweet basil (Ocimum basilicum L.). Open Agricult. 2017;2(1):589–94. https://doi.org/10.1515/opag-2017-0062

50. Arshi A, Ahmad A, Aref IM, Iqbal M. Effect of calcium against salinity-induced inhibition in growth, ion accumulation and proline contents in Cichorium intybus L. J Environ Biol. 2010;31(6):939–44.

51. Khan A, Khan AA, Samreen S, Irfan M. Assessment of sodium chloride (NaCl) induced salinity on the growth and yield parameters of Cichorium Intybus L. Nat Environ Pollut Technol. 2023;22 (2):845–52.

https://doi.org/10.46488/NEPT.2023.v22i02.026

52. Stavi I, Thevs N, Priori S. Soil salinity and sodicity in drylands: a review of causes, effects, monitoring, and restoration measures. Front Environ Sci. 2021;9:712831. https://doi.org/10.3389/fenvs.2021.712831

53. Bhatt R, Asopa PP, Sihag S, Sharma R, Kachhwaha S, Kothari SL. Comparative three-way analysis of biochemical responses in cereal and millet crops under salinity stress. J Appl Biol Biotechnol. 2015;3(06):22–8.

https://doi.org/10.7324/JABB.2015.3604

54. Hafez EM, Osman HS, Gowayed SM, Okasha SA, Omara AE-D, Sami R, et al. Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy. 2021;11:676. https://doi.org/10.3390/agronomy11040676

55. Yasseen BT, Jurjee JA, Sofajy SA. Changes in some growth processes induced by NaCl in individual leaves of two barley cultivars. Indian J Plant Physiol. 1987;30:1–6.

56. Pitann B, Schubert S, Mühling KH. Decline in leaf growth under salt stress is due to an inhibition of H+ pumping activity and increase in apoplastic pH of maize leaves. J Plant Nutr Soil Sci. 2009;172:535– 43. https://doi.org/10.1002/jpln.200800349

57. Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv. 2009;27(1):84–93.

https://doi.org/10.1016/j.biotechadv.2008.09.003

58. Zribi L, Fatma G, Fatma R, Salwa R, Hassan N, Nejib RM. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci Hort. 2009;120:367–72. https://doi.org/10.1016/j.scienta.2008.11.025

59. Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A. Response of tomato to two possible modes of salinity stress – A comparative analysis. J Soil Salinity Water Quality. 2010;2(2):84–90.

60. Hayat S, Mir BA, Wani AS, Hasan SA, Irfan M, Ahmad A. Screening of salt tolerant genotypes of Brassica juncea based on photosynthetic attributes. J Plant Interact. 2011;6:53–60.

https://doi.org/10.1080/17 429145.2010.521592

61. Akram NA, Ashraf M. Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak J Bot. 2011;43:521–30.

62. Tolay I. The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS One. 2021;16(2):e0246493. https://doi.org/10.1371/ journal.pone.0246493

63. Iyengar ERR, Reddy MP. Photosynthesis in high salt tolerant plants. In: Pesserkali M, editor. Handbook of photosynthesis. Baten Rose (LA): Marshal Deker; 1996. p. 56–65.

64. Machado RMA, Serralheiro RP. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 2017;3(2):30. https://doi.org/10.3390/ horticulturae3020030

65. Petropoulos SA, Levizou E, Ntatsi G, Fernandes Â, Petrotos K, Akoumianakis K, et al. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017;214:129–36. https://doi.org/10.1016/j. foodchem.2016.07.080

66. Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem. 2010;48(1):16–20. https://doi.org/10.1016/j.plaphy.2009.10.006

67. Noreen Z, Ashraf M, Akram NA. Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci. 2010;196:273–85. https://doi.org/10.1111/j.1439-037X.2010.00420.x

68. Eisa S, Hussin S, Geissler N, Koyro HW. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Australian J Crop Sci. 2012;6(2):357–68.

69. Ahmad P, Hakeem KUR, Kumar A, Ashraf M, Akram NA. Salt induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African J Biotech. 2012;11(11):2694–703. https://doi.org/10.5897/AJB11.3203

70. Megdiche W, Hessini K, Gharbi F, Jaleel CA, Ksouri R, Abdelly C. Photosynthesis and photosystem-2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica. 2008;46:410–9.

71. Shu S, Guo SR, Sun J, Yuan LY. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant. 2012;146(3):285– 96.

https://doi.org/10.1111/j.1399-3054.2012.01623.x

72. Alabdallah NM, Alzahrani HS. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J Biol Sci. 2020;27(11):3132–7. https://doi.org/10.1016/j.sjbs.2020.08.005

73. Mazhar Z, Akhtar J, Alhodaib A, Naz T, Zafar MI, Iqbal MM, et al. Efficacy of ZnO nanoparticles in Zn fortification and partitioning of wheat and rice grains under salt stress. Sci Rep. 2023;13(1):2022.

https://doi.org/10.1038/s41598-022-26039-8

74. Pang CH, Wang BS. Oxidative stress and salt tolerance in plants. In: Lüttge U, Beyschlag W, Murata J, editors. Progress in botany. Berlin: Springer; 2008. p. 231–45.

75. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30. https://doi.org/10.1016/j.plaphy.2010.08.016

76. Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot. 2002;53(372):1283–304. https://doi.org/10.1093/jexbot/53.372.1283

77. Sharma P, Jha AB, Dubey RS. Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In: Pessarakli M, editor. Handbook of plant and crop stress. 3rd ed. Florida: CRC Press; 2010. p. 89–138.

78. Noreen Z, Ashraf M. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol. 2009;166(16):1764–74. https://doi.org/10.1016/j. jplph.2009.05.005

79. Ashraf MA, Ashraf M, Ali Q. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot. 2010;42:559–66.

80. Santos MA, Camara R, Rodriguez P, Glaparols I, Torne JM. Influence of exogenous maize callus subjects to salt stress. Plant Cell Tissue Organ Cult. 1996;47:59–65.

81. Jain M, Mathur G, Koul S, Sarin NB. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Rep. 2001;20:463–8. https://doi.org/10.1007/s002990100353

82. Sabir P, Ashraf M, Akram NA. Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. J Agron Crop Sci. 2011;197(5):340–7. https://doi.org/10.1111/j.1439-037X.2011.00471.x

83. Adil M, Bashir S, Bashir S, Aslam Z, Ahmad N, Younas T, et al. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front Plant Sci. 2022;13:932861. https://doi.org/10.3389/fpls.2022.932861

84. Ali B, Saleem MH, Ali S, Shahid M, Sagir M, Tahir MB, et al. Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Front Plant Sci. 2022;13:973782.

https://doi.org/10.3389/fpls.2022.973782

85. Rakgotho T, Ndou N, Mulaudzi T, Iwuoha E, Mayedwa N, Ajayi RF. Green-synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture. 2022;12(5):597. https://doi.org/10.3390/agriculture12050597

86. Singh A, Sengar RS, Rajput VD, Minkina T, Singh RK. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture. 2022;12(7):1014. https://doi.org/10.3390/agriculture12071014

87. Ciriello M, Formisano L, Kyriacou M, Soteriou GA, Graziani G, De Pascale S, et al. Zinc biofortification of hydroponically grown basil: stress physiological responses and impact on antioxidant secondary metabolites of genotypic variants. Front Plant Sci. 2022;13:1049004.

https://doi.org/10.3389/fpls.2022.1049004

88. Singh A, Sengar RS, Shahi UP, Rajput VD, Minkina T, Ghazaryan KA. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses. 2022;3(1):33– 46. https://doi.org/10.3390/stresses3010004

89. Amira MS, Qados A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agri Sci. 2011;10:7–15.

https://doi.org/10.1016/j.jssas.2010.06.002

90. Rahman MM, Hossain M, Hossain KFB, Sikder MT, Shammi M, Rasheduzzaman M, et al. Effects of NaCl-salinity on tomato (Lycopersicon esculentum Mill.) plants in a pot experiment. Open Agricult. 2018;3:578–85. https://doi.org/10.1515/opag-2018-0061

91. Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, et al. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem. 2021;161:122–30. https://doi.org/10.1016/j.plaphy.2021.02.002

92. Lacerda JS, Martinez HE, Pedrosa AW, Clemente JM, Santos RH, Oliveira GL, et al. Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality. Crop Sci. 2018;58:1360–70. https://doi.org/10.2135/cropsci2017.06.0373

93. Marschner H. Marschner’s mineral nutrition of higher plants. Academic Press; 2011.

94. Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Lichtfouse, E., Navarrete M, Debaeke P, Véronique S, Alberola C, editors. Sustainable agriculture. Dordrecht: Springer Netherlands; 2009. p. 873–84.

95. Zhou P, Adeel M, Shakoor N, Guo M, Hao Y, Azeem I, et al. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: an overview. Nanomaterials (Basel). 2020;11(1):26.

https://doi.org/10.3390/nano11010026

96. Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks. 2014;4(3):49– 55. https://doi.org/10.22034/jchr.2018.544075

97. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem. 2014;33(11):2429–37. https://doi.org/10.1002/etc.2697

98. Haghighi M, Afifipour Z, Mozafarian M. The effect of N-Si on tomato seed germination under salinity levels. Int J Env Sci. 2012;6:87-90.

99. Sabaghnia N, Janmohammad M. Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol. 2015;69:39–55. https://doi.org/10.17951/c.2014.69.2.39

100. Mukarram M, Petrik P, Mushtaq Z, Khan MMA, Gulfishan M, Lux A. Silicon nanoparticles in higher plants: uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. Environ Pollut. 2022;310:119855. https://doi.org/10.1016/j.envpol.2022.119855

101. Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass (Cymbopogon flexuosus) under salt stress. Front Plant Sci. 2023;14:1116769. https://doi.org/10.3389/fpls.2023.1116769

102. Csonka LN, Hanson AD. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. https://doi.org/10.1146/annurev.mi.45.100191.003033

103. Yancey PH. Compatible and counteracting solutes. In: Strange K, editor. Cellular and molecular physiology of cell volume regulation. Boca Raton (FL): CRC Press; 1994. p. 81–109.

104. Laware SL, Raskar S. Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci. 2014;3(7):749–60.

105. Kumar A, Singh K, Verma P, Singh O, Panwar A, Singh T, et al. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Sci Rep. 2022;12(1):6938. https://doi.org/10.1038/s41598-022-10843-3

106. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Minaswamy V, Raja Reddy K, et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr. 2012;35(6):905–27.

https://doi.org/10.1080/01904167.2012.663443

107. Saxena R, Tomar RS, Kumar M. Exploring nanotechnology to mitigate abiotic stress in crop plants. J Pharmaceut Sci Res. 2016;8(9):974–80.

108. Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem. 2019;135:160–6. https://doi.org/10.1016/j.plaphy.2018.12.005

109. Awan S, Shahzadi K, Javad S, Tariq A, Ahmad A, Ilyas S. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. J Saudi Soc Agricul Sci. 2021;20(1):18–24. https://doi.org/10.1016/j. jssas.2020.10.003

110. Srivastav A, Ganjewala D, Singhal RK, Rajput VD, Minkina T, Voloshina M, et al. Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants (Basel). 2021;10(12):2556.

https://doi.org/10.3390/plants10122556

111. Fathi A, Zahedi M, Torabian S. Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. J Plant Nutr. 2017;40(19):2745–55. https://doi.org/10.1080/01904167.2017.1381731

112. Hezaveh TA, Pourakbar L, Rahmani F, Alipour H. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun Soil Sci Plant Anal. 2019;50(6):698–715. https://doi.org/10.1080/00103624.2019. 1589481

113. Gaafar R, Diab R, Halawa M, Elshanshory A, El-Shaer A, Hamouda M. Role of zinc oxide nanoparticles in ameliorating salt tolerance in soybean. Egypt J Bot. 2020;60(3):733–47. https://doi.org/10.21608/ebjo.2020.26415.1475

114. Kiferle C, Ascrizzi R, Martinelli M, Gonzali S, Mariotti L, Pistelli L, et al. Effect of Iodine treatments on Ocimum basilicum L.: biofortification, phenolics production and essential oil composition. PLoS One. 2019;14(12):e0226559.

https://doi.org/10.1371/journal.pone.0226559

115. Alamery AA, Ahmed NA. Effect of biofertilizers and zinc nano particles on growth, yield and oil percentage of sunflower (Helianthus annuus L.). Plant Archives. 2020;20(2):4648–52.

116. Khan A, Khan AA, Irfan M, Sayeed Akhtar M, Hasan SA. Lead-induced modification of growth and yield of Linum usitatissimum L. and its soil remediation potential. Int J Phytoremediation. 2023;25(8):1067-76. https://doi.org/10.1080/15226514.2022.2128040

Article Metrics
76 Views 17 Downloads 93 Total

Year

Month

Related Search

By author names

Similar Articles

Salinity and drought response alleviate caffeine content of young leaves of Coffea canephora var. Robusta cv. S274

Avinash Kumar,Gyanendra Kumar Naik,P. S. Simmi,Parvatam Giridhar

Comparative three way analysis of biochemical responses in cereal and millet crops under salinity stress

Ritika Bhatt, Prem Prakash Asopa, Santosh Sihag, Rakesh Sharma, Sumita Kachhwaha, S.L. Kothari

Physiological and biochemical characterization of Sesamum germplasms tolerant to NaCl

Tapaswini Hota, C. Pradhan, G. R. Rout

Evaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique

Hemaid Ibrahim Ahemaidan Soliman, Mohamed R. A. Abd Alhady

Effect of different polyamines on some physiological traits, growth, and development of basil (Ocimum basilicum L.) in salt stress under hydroponic culture conditions

Khatereh Nejadasgari Chokami, Vahid Abdossi, Saeid Samavat, Alireza Ladan Moghadam, Pezhman Moradi

Bacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties

Vyacheslav Shurigin,, Begali Alikulov, Kakhramon Davranov, Zafar Ismailov

Insights into the impact of spermidine in reducing salinity stress in Gerbera jamesonii

Javeria Uzma, Sai Krishna Talla, Praveen Mamidala

The effect of salinity and tofu whey wastewater on the growth kinetics, biomass, and primary metabolites in Euglena sp.

Ahmad Saifun Naser, Angga Puja Asiandu, Brilian Ryan Sadewo, Nila Tsurayya, Agusta Samodra Putra, Koko Iwan Agus Kurniawan, Eko Agus Suyono

Role of DREB genes in the regulation of salt stress-mediated defense responses in plants

Ashokkumar Ramakrishnan Yadav, Vaishnavi Ashokkumar, Suganthi Muthusamy, Senthilkumar Palanisamy

Plant growth regulator-mediated response under abiotic stress: A review

Shahreen Khan, Ravinder Singh, Harpreet Kaur, Ajay Kumar, Amit Vashishth, Moyad Shahwan,, Hardeep Singh Tuli

Assessment of biomarkers in acrylamide-induced neurotoxicity and brain histopathology in rat

Sreenivasulu Dasari, Muni Swamy Ganjayi, Sailaja Gonuguntla, Keerthi Ramineedu, Prabhakar Yellanur Konda, Balaji Meriga