Sparid species discrimination by COIBar-RFLP in commercial products

Venera Ferrito Marta Giuga Giada Santa Calogero Anna Maria Pappalardo   

Open Access   

Published:  May 20, 2024

DOI: 10.7324/JABB.2024.162054
Abstract

Processed seafood products are subject to fraudulent species substitution practices that pose problems not only economically but also for human health due to the risk of allergies. DNA-based molecular techniques offer an undoubted contribution to unraveling commercial fraud in processed seafood products, and several investigations have been conducted to develop specific and rapid assays for the identification of fish species. In this context, we hypothesize that the Cytochrome Oxidase I (COI) Barcode-Restriction Fragment Length Polymorphisms (COIBar- RFLP) strategy may be a useful molecular tool to quickly assess the authenticity of seafood products because (i) it takes advantage of the specific discriminatory power of the COI gene as a barcode and of the robust Restriction Fragment Length Polymorphism methodology and (ii) the interspecific variation in the digestion pattern obtained using the restriction enzymes allows bypassing the gene sequencing step. The Sparidae family includes species of high commercial value and many sparid species are difficult to recognize considering only their morphological features; thus, misidentifications are frequent. The aim of this work was to identify sparid species in processed products using the COIBar-RFLP strategy with the MspI restriction enzyme which yielded differential digestion patterns and unveiled two cases of species substitution. The proposed methodology could be used in food control laboratories to combat the widespread habit of fraudulent species substitution in the fishing industry.


Keyword:     COIBar-RFLP DNA barcoding Traceability fraud Sparidae


Citation:

Ferrito V, Giuga M, Calogero GS, Pappalardo AM. Sparid species discrimination by COIBar-RFLP in commercial products. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.162054

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Donlan CJ, Luque GM. Exploring the causes of seafood fraud: A meta-analysis on mislabeling and price. Mar Policy 2019;100:258-64. https://doi.org/10.1016/j.marpol.2018.11.022

2. Cermakova E, Lencova S, Mukherjee S, Horka P, Vobruba S, Demnerova K, et al. Identification of fish species and targeted genetic modifications based on DNA analysis: State of the art. Foods 2023;12:228. https://doi.org/10.3390/foods12010228

3. Lawrence S, Elliott C, Huisman W, Dean M, van Ruth S. The 11 sins of seafood: Assessing a decade of food fraud reports in the global supply chain. Compr Rev Food Sci Food Saf 2022;21:3746-69. https://doi.org/10.1111/1541-4337.12998

4. Kroetz K, Luque GM, Gephart JA, Jardine SL, Lee P, Chicojay Moore K, et al. Consequences of seafood mislabeling for marine populations and fisheries management. Proc Natl Acad Sci U S A 2020;117:30318-23. https://doi.org/10.1073/pnas.2003741117

5. Mohammadabadi MR, Shaikhaev GO, Sulimova GE, Rahman O, Mozafari MR. Detection of bovine leukemia virus proviral DNA in Yaroslavsl, Mongolian and black pied cattle by PCR. Cell Mol Biol Lett 2004;9:766-8.

6. Shahdadnejad N, Mohammadabadi MR, Shamsadini M. Typing of Clostridium perfringens isolated from broiler chickens using multiplex PCR. Genet Third Millennium 2016;14:4368-74.

7. Mohammadabadi MR, Soflaei M, Mostafavi H, Honarmand M. Using PCR for early diagnosis of bovine leukemia virus infection in some native cattle. Genet Mol Res 2011;10:2658-63. https://doi.org/10.4238/2011.October.27.2

8. Ahsani MR, Mohammadabadi MR, Shamsaddini MB. Clostridium perfringens isolate typing by multiplex PCR. J Venom Anim Toxins Incl Trop Dis 2010;16:573-8. https://doi.org/10.1590/S1678-91992010000400006

9. Mohammadabadi MR. Inter-simple sequence repeat loci associations with predicted breeding values of body weight in kermani sheep. Genet Third Millennium 2016;14:4383-90.

10. Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: Cytochrome c oxidase subunit 1 divergence, among closely related species. Proc Biol Sci 2003;270:S96-9. https://doi.org/10.1098/rsbl.2003.0025

11. Mohammadabadi MR, Torabi A, Tahmourespoor M, Baghizadeh A, Esmailizadeh K, Mohammadi A. Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Afr J Biotechnol 2010;9:6848-52.

12. Rohallah A, Mohammadreza MA, Shahin MB. Kappa-casein gene study in Iranian Sistani cattle breed (Bos indicus) using PCR-RFLP. Pak J Biol Sci 2007;10:4291-4. https://doi.org/10.3923/pjbs.2007.4291.4294

13. Aranishi F. Rapid PCR-RFLP method for discrimination of imported and domestic mackerel. Mar Biotechnol (NY) 2005;7:571-5. https://doi.org/10.1007/s10126-004-4102-1

14. Mata W, Chanmalee T, Punyasuk N, Thitamadee S. Simple PCR-RFLP detection method for genus- and species-authentication of four types of tuna used in canned tuna industry. Food Control 2020;108:106842. https://doi.org/10.1016/j.foodcont.2019.106842

15. Rahat MA, Haris M, Ullah Z, Ayaz SG, Nouman N, Rasool A, et al. Domestic animals' identification using PCR-RFLP analysis of cytochrome B gene. Adv Life Sci 2020;7:113-6.

16. Yao L, Lu J, Qu M, Jiang Y, Li F, Guo Y, et al. Methodology and application of PCR-RFLP for species identification in tuna sashimi. Food Sci Nutr 2020;8:3138-46. https://doi.org/10.1002/fsn3.1552

17. Khalid A, Imran M, Ali A, Muzammil S, Badar M, Hayat S, et al. Molecular marker (PCR-RFLP) assisted identification of meat species by mitochondrial cytochrome C oxidase subunit I (COI) gene. J Anim Plant Sci 2022;32:1724-30.

18. Giusti A, Malloggi C, Tosi F, Boldini P, Larrain Barth MA, Araneda C, et al. Mislabeling assessment and species identification by PCR-RFLP of mussel-based products (Mytilus spp.) sold on the Italian market. Food Control 2022;134:108692. https://doi.org/10.1016/j.foodcont.2021.108692

19. Fricke R, Eschmeyer WN, Fong JD. Eschmeyer's Catalog of Fishes. California: Caliornia Academy of Science; 2023.

20. Russo T, Costa C, Cataudella S. Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J Fish Biol 2007;71:629-56. https://doi.org/10.1111/j.1095-8649.2007.01528.x

21. Fruciano C, Tigano C, Ferrito V. Body shape variation and colour change during growth in a protogynous fish. Environ Biol Fishes 2012;94:615-22. https://doi.org/10.1007/s10641-011-9968-y

22. Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR, Henning F, et al. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol Ecol 2014;23:1828-45. https://doi.org/10.1111/mec.12590

23. Moreira C, Froufe E, Vaz-Pires P. Triay-Portella R, Correia AT. Landmark-based geometric morphometrics analysis of body shape variation among populations of the blue jack mackerel, Trachurus picturatus, from the North-East Atlantic. J Sea Res 2020;163:101926. https://doi.org/10.1016/j.seares.2020.101926

24. Antonucci F, Costa C, Aguzzi J, Cataudella S. Ecomorphology of morpho-functional relationships in the family of Sparidae: A quantitative statistic approach. J Morphol 2009;270:843-55. https://doi.org/10.1002/jmor.10725

25. Seyoum S, Adams DH, Matheson RE, Whittington JA, Alvarez AC, Sheridan NE, et al. Genetic relationships and hybridization among three western atlantic sparid species: Sheepshead (Archosargus probatocephalus), sea bream (A. rhomboidalis) and Pinfish (Lagodon rhomboides). Conserv Genet 2020;21:161-73. https://doi.org/10.1007/s10592-019-01244-7

26. Armani A, Guardone L, Castigliego L, D'Amico P, Messina A, Malandra R, et al. DNA and Mini-DNA barcoding for the identification of porgies species (Family Sparidae) of commercial interest on the international market. Food Control 2015;50:589-96. https://doi.org/10.1016/j.foodcont.2014.09.025

27. Ceruso M, Mascolo C, Anastasio A, Pepe T, Sordino P. Frauds and fish species authentication: Study of the complete mitochondrial genome of some Sparidae to provide specific barcode markers. Food Control 2019;103:36-47. https://doi.org/10.1016/j.foodcont.2019.03.028

28. Ceruso M, Mascolo C, De Luca P, Venuti I, Smaldone G, Biffali E, et al. A rapid method for the identification of fresh and processed Pagellus erythrinus species against frauds. Foods 2020;9:1397. https://doi.org/10.3390/foods9101397

29. Pappalardo AM, Ferrito V. DNA barcoding species identification unveils mislabeling of processed flatfish products in Southern Italy Markets. Fish Res 2015;164:153-8. https://doi.org/10.1016/j.fishres.2014.11.004

30. Pappalardo AM, Cuttitta A, Sardella A, Musco M, Maggio T, Patti B, et al. DNA barcoding and COI sequence variation in Mediterranean lanternfishes larvae. Hydrobiologia 2015;749:155-67. https://doi.org/10.1007/s10750-014-2161-5

31. Pappalardo AM, Copat C, Ferrito V, Grasso A, Ferrante M. Heavy metal content and molecular species identification in canned tuna: Insights into human food safety. Mol Med Rep 2017;15:3430-7. https://doi.org/10.3892/mmr.2017.6376

32. Pappalardo AM, Copat C, Raffa A, Rossitto L, Grasso A, Fiore M, et al. Fish-based baby food concern-from species authentication to exposure risk assessment. Molecules 2020;25:3961. https://doi.org/10.3390/molecules25173961

33. Pappalardo AM, Raffa A, Calogero GS, Ferrito V. Geographic pattern of sushi product misdescription in Italy-a crosstalk between citizen science and DNA barcoding. Foods 2021;10:756. https://doi.org/10.3390/foods10040756

34. Fischer W, Bauchot ML, Schneider M. Fiches FAO D'identification des Espèces Pour les Besoins de la Pêche. (Révision 1). Méditerranée et mer Noire. Zone de Pêche 37. Vertébrés. Publication Préparée par la FAO, Résultat d'un Accord Entre la FAO et la Commission des Communautés Européennes (Projet GCP/INT/422/EEC) Financée Conjointement par Ces Deux Organisations. Vol. 2. Rome: FAO; 1987. p. 761-1530.

35. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 2005;360:1847-57. https://doi.org/10.1098/rstb.2005.1716

36. Pappalardo AM, Federico C, Sabella G, Saccone S, Ferrito V. A COI nonsynonymous mutation as diagnostic tool for intraspecific discrimination in the european anchovy Engraulis encrasicolus (Linnaeus). PLoS One 2015;10:e0143297. https://doi.org/10.1371/journal.pone.0143297

37. Messing J. New M13 vectors for cloning. Methods Enzymol 1983;101:20-78. https://doi.org/10.1016/0076-6879(83)01005-8

38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82. https://doi.org/10.1093/nar/25.24.4876

39. Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 2020;37:1237-9. https://doi.org/10.1093/molbev/msz312

40. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-91. https://doi.org/10.2307/2408678

41. Ferrito V, Bertolino V, Pappalardo AM. White fish authentication by COIBar-RFLP: toward a common strategy for the rapid identification of species in convenience seafood. Food Control 2016;70:130-7. https://doi.org/10.1016/j.foodcont.2016.05.026

42. Zhang DX, Hewitt GM. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 1996;11:247-51. https://doi.org/10.1016/0169-5347(96)10031-8

43. Parenti P. An annotated checklist of the fishes of the family Sparidae. J Fish Taxonomy 2019;4:47-98.

44. Casu M, Lai T, Curini-Galletti M, Ruiu A, Pais A. Identification of Mediterranean Diplodus spp. and dentex dentex (Sparidae) by means of dna inter-simple sequence repeat (ISSR) markers. J Exp Mar Biol Ecol 2009;368:147-52. https://doi.org/10.1016/j.jembe.2008.09.021

45. Schiefenhövel K, Rehbein H. Differentiation of Sparidae species by DNA sequence analysis, PCR-SSCP and IEF of sarcoplasmic proteins. Food Chem 2013;138:154-60. https://doi.org/10.1016/j.foodchem.2012.10.057

46. Mascolo C, Ceruso M, Palma G, Anastasio A, Pepe T, Sordino P. The complete mitochondrial genome of the Pink dentex Dentex gibbosus (Perciformes: Sparidae). Mitochondrial DNA B Resour 2018;3:525-6. https://doi.org/10.1080/23802359.2018.1467230

47. Mascolo C, Ceruso M, Palma G, Anastasio A, Sordino P, Pepe T. The complete mitochondrial genome of the axillary seabream, Pagellus acarne (Perciformes: Sparidae). Mitochondrial DNA B Resour 2018;3:434-5. https://doi.org/10.1080/23802359.2018.1450674

48. Ceruso M, Mascolo C, Palma G, Anastasio A, Pepe T, Sordino P. The complete mitochondrial genome of the common dentex, Dentex dentex (Perciformes: Sparidae). Mitochondrial DNA B Resour

2018;3:391-2.

49. Ceruso M, Mascolo C, Lowe EK, Palma G, Anastasio A, Sordino P, et al. The complete mitochondrial genome of the common pandora Pagellus erythrinus (Perciformes: Sparidae). Mitochondrial DNA B Resour 2018;3:624-5. https://doi.org/10.1080/23802359.2018.1467235

50. Ceruso M, Venuti I, Osca D, Caputi L, Anastasio A, Crocetta F, et al. The complete mitochondrial genome of the sharpsnout seabream Diplodus puntazzo (Perciformes: Sparidae). Mitochondrial DNA B Resour 2020;5:2379-81. https://doi.org/10.1080/23802359.2020.1775509

51. Ceruso M, Mascolo C, De Luca P, Venuti I, Biffali E, Ambrosio RL, et al. Dentex dentex Frauds: Establishment of a new DNA barcoding Marker. Foods 2021;10:580. https://doi.org/10.3390/foods10030580

52. Griffith AM, Sotelo CG, Mendes R, Perez Martin RI, Schroder U, Shorten M, et al. Current methods for seafood authenticity testing in Europe: Is there a need for harmonisation? Food Control 2016;45:95-100. https://doi.org/10.1016/j.foodcont.2014.04.020

53. Hashim HO, Al-Shuhaib MB. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. J Appl Biotechnol Rep 2019;6:137-44. https://doi.org/10.29252/JABR.06.04.02

54. Pappalardo AM, Ferrito V. A COIBar-RFLP strategy for the rapid detection of Engraulis encrasicolus in processed anchovy products. Food Control 2015;57:385-92. https://doi.org/10.1016/j.foodcont.2015.03.038

55. Pappalardo AM, Federico C, Saccone S, Ferrito V. Differential flatfish species detection by COIBar-RFLP in processed seafood products. Eur Food Res Technol 2018;244:2191-201. https://doi.org/10.1007/s00217-018-3129-x

56. Pappalardo AM, Petraccioli A, Capriglione T, Ferrito V. From fish eggs to fish name: Caviar species discrimination by COIBar-RFLP, an efficient molecular approach to detect fraudulent caviar trade. Molecules 2019;24:2468. https://doi.org/10.3390/molecules24132468

57. Ferrito V, Raffa A, Rossitto L, Federico C, Saccone S, Pappalardo AM. Swordfish or shark slice? A rapid response by COIBar-RFLP. Foods 2019;8:537. https://doi.org/10.3390/foods8110537

58. Pappalardo AM, Giuga M, Raffa A, Nania M, Rossitto L, Calogero GS, et al. COIBar-RFLP molecular strategy discriminates species and unveils commercial frauds in fishery products. Foods 2022;11:1569. https://doi.org/10.3390/foods11111569

59. Taylor SL, Kabourek JL, Hefle SL. Fish allergy: Fish and products thereof. J Food Sci 2004;69:R175-80. https://doi.org/10.1111/j.1750-3841.2004.tb18022.x

Article Metrics
41 Views 13 Downloads 54 Total

Year

Month

Related Search

By author names