Hyaluronan – A multipotent biomolecule in the field of medicine

Shruti Thomas Rachana Kundur Rajashekar Siddhi Sudev Sugandhi Ganapathi Thangzuanlian Langel Suma Sarojini   

Open Access   

Published:  May 20, 2024

DOI: 10.7324/JABB.2024.159644

Hyaluronan, a natural biomolecule, has immense potential in the field of medicine. This glycosaminoglycan present naturally in the human body and seen more in connective tissue, skin, and eyes essentially functions as lubricant and helps strengthen bones. Hyaluronan supplements have been used for a plethora of medical applications including cancer and osteoarthritis therapy, wound healing, and regenerative medicine. The revolutionary discoveries in the field of nanotechnology and biopolymers have indeed paved the way for better and more precise uses of hyaluronan by way of newer designs and composites for improved drug efficacy. At the same time, caution has to be exercised, as few recent studies imply the positive role of low molecular weight hyaluronic acid in the progression of some cancers. The present review elaborates on the range of existing applications across various fields ranging from medical treatment to organ development, and sheds light on the possibilities of maximizing its effectiveness.

Keyword:     Hyaluronan Cancer Wound healing Nanomaterial Stem cells Osteoarthritis


Thomas S, Rajashekar RK, Sudev S, Ganapathi S, Langel T, Sarojini S. Hyaluronan – A multipotent biomolecule in the field of medicine. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.159644

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, et al. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021;336:598-620. https://doi.org/10.1016/j.jconrel.2021.07.002

2. Hargittai I, Hargittai M. Molecular structure of hyaluronan: An introduction. Struct Chem 2008;19:697-717. https://doi.org/10.1007/s11224-008-9370-3

3. Garg HG, Hales CA. Chemistry and Biology of Hyaluronan. 1st ed. Amsterdam Boston: Elsevier; 2004.

4. Karousou E, Parnigoni A, Moretto P, Passi A, Viola M, Vigetti D. Hyaluronan in the cancer cells microenvironment. Cancers (Basel) 2023;15:798. https://doi.org/10.3390/cancers15030798

5. Skandalis SS, Karalis T, Heldin P. Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020;62:20-30. https://doi.org/10.1016/j.semcancer.2019.07.002

6. Garantziotis S, Savani RC. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019;78-79:1-10. https://doi.org/10.1016/j.matbio.2019.02.002

7. Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan receptors as mediators and modulators of the tumor microenvironment. Adv Healthc Mater 2023;12:e2202118. https://doi.org/10.1002/adhm.202202118

8. Kobayashi T, Chanmee T, Itano N. Hyaluronan: Metabolism and function. Biomolecules 2020;10:1525. https://doi.org/10.3390/biom10111525

9. Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun 2020;11:3120. https://doi.org/10.1038/s41467-020-16962-7

10. Zhang L, Huang H, Wang H, Chen J, Du G, Kang Z. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett 2016;38:2103-8. https://doi.org/10.1007/s10529-016-2193-1

11. Boeriu CG, Springer J, Kooy FK, van den Broek LA, Eggink G. Production methods for hyaluronan. Int J Carbohydr Chem 2013;2013:624967. https://doi.org/10.1155/2013/624967

12. de Oliveira JD, Carvalho LS, Gomes AM, Queiroz LR, Magalhães BS, Parachin NS. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact 2016;15:119. https://doi.org/10.1186/s12934-016-0517-4

13. Agarwal G, Krishnan KV, Prasad SB, Bhaduri A, Jayaraman G. Biosynthesis of hyaluronic acid polymer: Dissecting the role of sub structural elements of hyaluronan synthase. Sci Rep 2019;9:12510. https://doi.org/10.1038/s41598-019-48878-8

14. Ucm R, Aem M, Lhb Z, Kumar V, Taherzadeh MJ, Garlapati VK, et al. Comprehensive review on biotechnological production of hyaluronic acid: Status, innovation, market and applications. Bioengineered 2022;13:9645-61. https://doi.org/10.1080/21655979.2022.2057760

15. Shah MV, Badle SS, Ramachandran KB. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochem Eng J 2013;80:53-60. https://doi.org/10.1016/j.bej.2013.09.013

16. Blunck D, Schöffski O. Hyaluronic acid treatment versus standard of care in chronic wounds in a German setting: Cost-effectiveness analysis. Health Sci Rep 2023;6:e969. https://doi.org/10.1002/hsr2.969

17. Munjal A, Hannezo E, Tsai TY, Mitchison TJ, Megason SG. Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. Cell 2021;184:6313-25.e18. https://doi.org/10.1016/j.cell.2021.11.025

18. Murado MA, Montemayor MI, Cabo ML, Vázquez JA, González MP. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod Process 2012;90:491-8. https://doi.org/10.1016/j.fbp.2011.11.002

19. Suri S, Schmidt CE. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater 2009;5:2385-97. https://doi.org/10.1016/j.actbio.2009.05.004

20. Liu L, Liu Y, Li J, Du G, Chen J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb Cell Fact 2011;10:99. https://doi.org/10.1186/1475-2859-10-99

21. Kooy FK, Ma M, Beeftink HH, Eggink G, Tramper J, Boeriu CG. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis. Anal Biochem 2009;384:329-36. https://doi.org/10.1016/j.ab.2008.09.042

22. Kooy FK. Enzymatic Production of Hyaluronan Oligo- and Polysaccharides. Dissertation PhD Thesis. Wageningen University; 2010.

23. Pang B, Wang H, Huang H, Liao L, Wang Y, Wang M, et al. Enzymatic production of low-molecular-weight hyaluronan and its oligosaccharides: A review and prospects. J Agric Food Chem 2022;70:14129-39. https://doi.org/10.1021/acs.jafc.2c05709

24. Jing W, DeAngelis PL. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: Two active sites exist in one polypeptide. Glycobiology 2000;10:883-9. https://doi.org/10.1093/glycob/10.9.883

25. Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach- Carson MC, Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater 2014;10:1558-70. https://doi.org/10.1016/j.actbio.2013.12.019

26. Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014;5:101. https://doi.org/10.3389/fimmu.2014.00101

27. Yang S, Ling Y, Zhao F, Li W, Song Z, Wang L, et al. Hymecromone: A clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther 2022;7:91. https://doi.org/10.1038/s41392-022-00952-w

28. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005;11:1173-9. https://doi.org/10.1038/nm1315

29. Nakamura K, Yokohama S, Yoneda M, Okamoto S, Tamaki Y, Ito T, et al. High, but not low, molecular weight hyaluronan prevents T-cell-mediated liver injury by reducing proinflammatory cytokines in mice. J Gastroenterol 2004;39:346-54. https://doi.org/10.1007/s00535-003-1301-x

30. Bollyky PL, Falk BA, Wu RP, Buckner JH, Wight TN, Nepom GT. Intact extracellular matrix and the maintenance of immune tolerance: High molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J Leukoc Biol 2009;86:567-72. https://doi.org/10.1189/jlb.0109001

31. Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T. Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res 2011;29:258-64. https://doi.org/10.1002/jor.21216

32. Julovi SM, Ito H, Hiramitsu T, Yasuda T, Nakamura T. Hyaluronan inhibits IL-1beta-stimulated collagenase production via down-regulation of phosphorylated p38 in SW-1353 human chondrosarcoma cells. Mod Rheumatol 2008;18:263-70. https://doi.org/10.3109/s10165-008-0067-7

33. Sun SF, Lin GC, Hsu CW, Lin HS, Liou IS, Wu SY. Comparing efficacy of intraarticular single crosslinked Hyaluronan (HYAJOINT Plus) and platelet-rich plasma (PRP) versus PRP alone for treating knee osteoarthritis. Sci Rep 2021;11:140. https://doi.org/10.1038/s41598-020-80333-x

34. Jin Y, Koh RH, Kim SH, Kim KM, Park GK, Hwang NS. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater Sci Eng C Mater Biol Appl 2020;115:111096. https://doi.org/10.1016/j.msec.2020.111096

35. Lu G, Du L, Lu J, Jin L. Nanoparticles containing hyaluronan acid and Astragalus polysaccharides for treating osteoarthritis. Int J Polym Sci 2019;2019:8143528. https://doi.org/10.1155/2019/8143528

36. Porcello A, Gonzalez-Fernandez P, Jordan O, Allémann E. Nanoforming hyaluronan-based thermoresponsive hydrogels: Optimized and tunable functionality in osteoarthritis management. Pharmaceutics 2022;14:659. https://doi.org/10.3390/pharmaceutics14030659

37. Yoshioka K, Katayama M, Nishiyama T, Harada K, Takeshita S, Kawamata Y. Biocompatibility study of different hyaluronan products for intra-articular treatment of knee osteoarthritis. BMC Musculoskelet Disord 2019;20:424. https://doi.org/10.1186/s12891-019-2815-6

38. Fallacara A, Vertuani S, Panozzo G, Pecorelli A, Valacchi G, Manfredini S. Novel artificial tears containing cross-linked hyaluronic acid: An in vitro re-epithelialization study. Molecules 2017;22:2104. https://doi.org/10.3390/molecules22122104

39. Yu Y, Lau LC, Lo AC, Chau Y. Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: A 6-month in vivo study. Transl Vis Sci Technol 2015;4:5. https://doi.org/10.1167/tvst.4.2.5

40. Serban MA, Skardal A. Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biol 2019;78-79:337-45. https://doi.org/10.1016/j.matbio.2018.02.010

41. Ferroni L, D'Amora U, Leo S, Tremoli E, Raucci MG, Ronca A, et al. PEEK and hyaluronan-based 3D printed structures: Promising combination to improve bone regeneration. Molecules 2022;27:8749. https://doi.org/10.3390/molecules27248749

42. Juhaš?ik M, Ková?ik A, Huerta-Ángeles G. Recent advances of hyaluronan for skin delivery: From structure to fabrication strategies and applications. Polymers (Basel) 2022;14:4833. https://doi.org/10.3390/polym14224833

43. Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019;16:915-36. https://doi.org/10.1080/17425247.2019.1645115

44. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 2007;23:435-61. https://doi.org/10.1146/annurev.cellbio.23.090506.123337

45. Sharma D, Hamlet S, Vaquette C, Petcu EB, Ramamurthy P, Ivanovski S. Local delivery of hydrogel encapsulated vascular endothelial growth factor for the prevention of medication-related osteonecrosis of the jaw. Sci Rep 2021;11:23371. https://doi.org/10.1038/s41598-021-02637-w

46. Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci 2011;359:318-25. https://doi.org/10.1016/j.jcis.2011.03.071

47. Khan N, Niazi ZR, Rehman FU, Akhtar A, Khan MM, Khan S, et al. Hyaluronidases: A therapeutic enzyme. Protein Pept Lett 2018;25:663-76. https://doi.org/10.2174/0929866525666180629121823

48. Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2019;78-79:292-313. https://doi.org/10.1016/j.matbio.2018.03.022

49. Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J Drug Target 2015;23:605-18. https://doi.org/10.3109/1061186X.2015.1052072

50. Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers (Basel) 2020;12:940. https://doi.org/10.3390/cancers12040940

51. Liu M, Tolg C, Turley E. Dissecting the dual nature of hyaluronan in the tumor microenvironment. Front Immunol 2019;10:947. https://doi.org/10.3389/fimmu.2019.00947

52. Rutjes AW, Jüni P, da Costa BR, Trelle S, Nüesch E, Reichenbach S. Viscosupplementation for osteoarthritis of the knee: A systematic review and meta-analysis. Ann Intern Med 2012;157:180-91. https://doi.org/10.7326/0003-4819-157-3-201208070-00473

53. Hunter DJ. Viscosupplementation for osteoarthritis of the knee. N Engl J Med 2015;372:1040-7. https://doi.org/10.1056/NEJMct1215534

54. Kim PK, Halbrook CJ, Kerk SA, Radyk M, Wisner S, Kremer DM, et al. Hyaluronic acid fuels pancreatic cancer cell growth. Elife 2021;10:10.7554/eLife.62645. https://doi.org/10.7554/eLife.62645

55. Liu Y, Li L, Wang L, Lu L, Li Y, Huang G, et al. "Two-faces" of hyaluronan, a dynamic barometer of disease progression in tumor microenvironment. Discov Oncol 2023;14:11. https://doi.org/10.1007/s12672-023-00618-1

56. Walker K, Basehore BM, Goyal A, Zito PM. Hyaluronic acid. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023.

Article Metrics
100 Views 24 Downloads 124 Total



Related Search

By author names

Similar Articles

Serum malondialdehyde levels in lung cancer patients

Mohammed RafiqKhan, Sudha Sellappa

In vitro studies of Asian medicinal plants with potential activity against breast cancer

Zaida Zakaria, Siew Hua Gan, Mahaneem Mohamed

Long Non-Coding RNAs and their “Orchestration” in Cancers

Venkata Narasimha Kadali, Sheji Chandran, Smitha Murthy

Antiproliferative activities of Althaea ludwigii L. extract on Michigan Cancer Foundation-7 breast cancer cell line

Zinah Essam Hameed Alshaya, Enas Jawad Kadhim, Hayder B. Sahib

Nyctanthes arbor-tristis: Comprehensive review on its pharmacological, antioxidant, and anticancer activities

Smita Parekh, Anjali Soni

In vitro antiproliferative effect of aqueous extract of Solanum macranthum fruits on MDA-MB-231 tripple negative breast cancer cell line

Vishal U. Kalebar , Joy H. Hoskeri, Shivaprakash V. Hiremath, Murigendra B. Hiremath

Identification of highest L-Methioninase enzyme producers among soil microbial isolates, with potential antioxidant and anticancer properties

D. Kavya, Varalakshmi Kilingar Nadumane

Antimicrobial, anti-inflammatory, and anticancer activities of leaves extracts of Filicium decipiens

Atiyaparveen I Basarikatti, Sanjay Mishra, Vijaykumar Uppar, Basavaraj Padmashali

The comparative antimicrobial and anticancer of chemical extract from in vitro and in vivo Peperomia pellucida plantlet

Lydia Teoh, Nareshwaran Gnanasegaran, Ahmad Faris Mohd Adnan, Rosna Mat Taha

Ellagic acid—Fe@BSA nanoparticles for preferential payload delivery and chemodynamic therapy in A549 cells

Sandeep Suresh Menon, Sivaramakrishnan Venkatabalasubramanian

Anti-proliferative activities of solasodine extracts from different Solanum spp. cell cultures on colon and bone carcinoma cell lines

Vijaykumar Deshmukh,, Sangeeta Ballav, Soumya Basu, Sanjay Mishra,, Jyoti Deshpande, Minal Wani

Role of microRNAs in the progression and metastasis of gastric cancer

Havisha Dinesh, Megala Jayaraman

Exosome mediated cell signal toward breast cancer metastasis: A comprehensive review

Manikantan Pappuswamy, Anushka Shitut

Identification of phytocompounds from Paris polyphylla Smith as potential inhibitors against two breast cancer receptors (ERÞ and EGFR tyrosine kinase) through chromatographic and In silico approaches

Debmalya Das Gupta, Saurov Mahanta, Sasti Gopal Das, Sanjib Kumar Das, Dipayan Paul, Hui Tag, Pallabi Kalita Hui

Multitargeted molecular docking study of phytochemicals on hepatocellular carcinoma

Vikas Jha, Anjali Bhosale, Prakruti Kapadia, Agraj Bhargava, Arpita Marick, Zahra Charania, Omkar Parulekar, Mafiz Shaikh, Bhakti Madaye

In-vitro and in-vivo models for the identification and validation of radioprotectors and radiosensitizers

Debasish Mohapatra,, Amlan Priyadarshee Mohapatra,, Anjan Kumar Sahoo, Shantibhusan Senapati

Chemical profiling, in vitro antibacterial, and cytotoxic properties of Elytranthe parasitica (L.) Danser – A hemiparasitic Indian mistletoe

Keragodu Paramesh Sharath, Raja Naika

The physicochemical and biological properties of novel silver nanoparticles synthesized by the extract of Holigarna ferruginea

Kumbar Mudakappa Manjunath, Y. L. Krishnamurthy

miR-122 and miR-21 as clinical biomarkers in hepatocellular carcinoma: A review

Nishant Kumar, Priyvart Choudhary, Narotam Sharma, Alok Tripathi, Nishesh Sharma

Preparation of zinc oxide-carboxymethyl cellulose blended with cyclophosphamide for targeted drug delivery to lung adenocarcinoma cells

K. Harsha Prabha, Mahalakshmi Nannan, Sivaramakrishnan Venkatabalasubramanian

Purification and structural characterization of Chojalactone C, a promising anticancer compound from a marine bacterium, Paenibacillus lentimorbus SAGM 3

Nagamuthu Vinothkumar, Pachaiappan Pugalendhi

Classification of gene expression from RNA-seq data for pancreatic cancer prognosis using ensemble learning

G. Jagadeeswara Rao,, A. Siva Prasad

Systems biology approaches of Scopoletin reveal target potential biomarkers and its associated signaling pathways in colon cancer

Kunnathur Murugesan Sakthivel, Rajan Radha Rasmi, Loganathan Chandramani Priya Dharshini, Balasubramanian Ramesh

Identification of differential expressed genes and its related pathways in Hela cell line treated with urea noscapine as potent anticancer agent

Animesh Pattnaik, Pradeep Kumar Naik

In vitro anti-cancer potency of Mortierella elongata lipids against MCF 7 cells through induction of apoptosis and cell cycle arrest

S. Ida Poornima, V. Judia Harriet Sumathy

Comparative study of hydroalcoholic extracts of Bryophyllum pinnatum and Macrotyloma uniflorum for their antioxidant, antiurolithiatic, and wound healing potential

Chetna Faujdar, Priyadarshini

Evaluation of the vanillin treatment on migration and anchorage-independent growth of glioblastoma cell line

Megha Gautam, Reema Gabrani

Nanotechnology for the bioremediation of organic and inorganic compounds in aquatic ecosystem/marine ecosystem

Ishta Kaul, Jai Gopal Sharma

Efficacy of mineral nutrients and nanomaterials on the productivity of capsicum (Capsicum annuum L. cv. Rani) under polyhouse

Himanshi Dwivedi, Shailesh Kumar Singh, Shraddha Mahajan, Sachin Kishor, Deepak Maurya, Vineet Kumar

Osteogenic potential of primary stem cells derived from the human dental pulp is enhanced by carboxymethyl cellulose/chitosan scaffold doped with wollastonite particles

Dannie Macrin, Vivek Narayanan, Arikketh Devi

Sequential passage and characterization of mesenchymal stem cells derived from single and pooled human umbilical cord tissue

Chirayu Padhiar, Muthuraman Muthuchamy, Arvind Kumar Dhanraj, Srividhya Raghavan, Mayur Abhaya, Wilson Aruni