Phylogenetic study of some major Dendrobium species of Eastern Himalaya using internal transcribed spacer marker

Animesh Mondal Kalyan Kumar De   

Open Access   

Published:  May 03, 2024

DOI: 10.7324/JABB.2024.180342
Abstract

The entire internal transcribed spacer (ITS) region sequencing was used to determine the phylogenetic relationship of 44 Eastern Himalayan Dendrobium species using the Sanger method and MEGA 11. The combined length of ITS-I and ITS-II varies between 623 and 644 base pairs (bp). Among them, there are 403 polymorphic, 91 unique, and 223 conserved nucleotides. In addition, 337 nucleotides are parsimony informative, with a mean of 0.51 that supports the presence of genetic variation in the genome of the selected species. Overall composition distance is 0.32, transition and transversion bias (R) 1.444, and mean evolutionary divergence (d) 0.16. The length of ITS-2 sequences is bigger than that of ITS-I. ITS-II exhibits a higher G+C% content, and the K2+G model is the most suitable, with the lowest penalty for nucleotide substitutions. The average consistency, retention, composite value, and parsimony-informative sites (in parentheses) are 0.5028 (0.4571), 0.6545 (0.6545), and 0.3290 (0.2992), respectively. The mean value of the disparity indices is 0.192, which measures the variation in evolutionary trends between two sequences. In addition, the ratio of non-synonymous to synonymous substitutions (dN/dS) is −0.33 promotes purifying species selection. The prevalence of the TGT codon is abundant across the sequences, with the UCG codon exhibiting the highest relative synonymous codon usage (RSCU). Conversely, the GAC codon has the lowest RSCU value. The greatest genetic divergence occurred between Dendrobium aphyllum and Dendrobium denudans. The Breviflorus species group has the most genetic diversity, whereas Formosae has the least. Between Grastidium and Stachyobium group sequences had the highest evolutionary distance, whereas Dendrobium and Grastidium had the least. The negative value of Tajima’s D, Fu and Li’s D*, F*, and Fu’s Fs tests indicated current population is growing after facing a recent bottleneck. This study suggests that ITS sequencing could be a major focus of comparative sequencing at the generic level in Dendrobium plants and could provide valuable phylogenetic reconstruction for clarifying the evolutionary relevance of the taxa studied.


Keyword:     Dendrobium spp Genetic diversity Internal transcribed spacer Neutral evolution theory Tajima’s D


Citation:

Mondal A, De KK. Phylogenetic study of some major Dendrobium species of Eastern Himalaya using internal transcribed spacer marker. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.180342

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Tang XG, Yuan YD, Zhang JC. How climate change will alter the distribution of suitable Dendrobium habitats. Front Ecol Evol 2020;8:536339. https://doi.org/10.3389/fevo.2020.536339

2. Lokho A. Diversity of Dendrobium Sw. Its distributional patterns and present status in the Northeast India. Int J Sci Res 2013;3:1-9.

3. Deori C, Sarma SK, Hynniewte TM. Dendrobium Orchids of Northeast India. Guwahati, Assam, India: Purbayon Publication; 2019.

4. Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 2016;6:19029. https://doi.org/10.1038/srep19029

5. Teixeira da Silva JA, Ng TB. The medicinal and pharmaceutical importance of Dendrobium species. Appl Microbiol Biotechnol 2017;101:2227-39. https://doi.org/10.1007/s00253-017-8169-9

6. Bhattacharyya P, Kumaria S, Tandon P. High-frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. S Afr J Bot 2016;104:232-43. https://doi.org/10.1016/j.sajb.2015.11.013

7. Szlachetko DL, Kolanowska M, Naczk A, Gorniak M, Dudek M, Rutkowski P, et al. Taxonomy of Cyrtochilum-alliance (Orchidaceae) in the light of molecular and morphological data. Bot Stud 2017;58:8. https://doi.org/10.1186/s40529-017-0164-z

8. Mort ME, Archibald JK, Randle CP, Levsen ND, O'Leary TR, Topalov K, et al. Inferring phylogeny at low taxonomic levels: Utility of rapidly evolving cpDNA and nuclear ITS loci. Am J Bot 2007;94:173-83. https://doi.org/10.3732/ajb.94.2.173

9. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 1995;82:247-77. https://doi.org/10.2307/2399880

10. Yuan ZQ, Zhang JY, Liu T. Phylogenetic relationship of China Dendrobium species based on the sequence of the internal transcribed spacer of ribosomal DNA. Biol Plant 2009;53:155-8. https://doi.org/10.1007/s10535-009-0024-0

11. Xiang XG, Schuiteman A, Li DZ, Huang WC, Chung SW, Li JW, et al. Molecular systematics of Dendrobium (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences. Mol Phylogenet Evol 2013;69:950-60. https://doi.org/10.1016/j.ympev.2013.06.009

12. Liu YT, Chen RK, Lin SJ, Chen YC, Chin SW, Chen FC, et al. Analysis of sequence diversity through internal transcribed spacers and simple sequence repeats to identify Dendrobium species. Genet Mol Res 2014;13:2709-17. https://doi.org/10.4238/2014.April.8.15

13. Moudi M, Go R. Monophyly of four sections of genus Dendrobium (Orchidaceae): Evidence from nuclear ribosomal DNA internal transcribed spacer (ITS) sequences. Int J Bioassays 2015;4:3622-6.

14. Feng S, He R, Yang S, Chen Z, Jiang M, Lu J, et al. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene 2015;567:182-8. https://doi.org/10.1016/j.gene.2015.04.076

15. Wang S, Hou F, Zhao J, Cao J, Peng C, Wan D, et al. Authentication of Chinese herbal medicines Dendrobium species and phylogenetic study based on nrDNA ITS sequence. Int J Agric Biol 2018;20:369-74. https://doi.org/10.17957/IJAB/15.0500

16. Moudi M, Go R. The comparison between nuclear ribosomal DNA and chloroplast DNA in molecular systematic study of four sections of genus Dendrobium sw. (orchidaceae). Int J Bioassays 2016;5:4944-52. https://doi.org/10.21746/ijbio.2016.03.0018

17. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus 1990;12:13-5. https://doi.org/10.2307/2419362

18. Tamura K, Glen S, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120

19. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009;25:1451-2. https://doi.org/10.1093/bioinformatics/btp187

20. Deori C. Morphological diversity within the genus Dendrobium Swartz (Orchidaceae) in Northeast India. Richardiana 2014;16:85-110.

21. Feng S, Jiang Y, Wang S, Jiang M, Chen Z, Ying Q, et al. Molecular identification of Dendrobium Species (Orchidaceae) based on the DNA barcode ITS2 region and its application for phylogenetic study. Int J Mol Sci 2015;16:21975-88. https://doi.org/10.3390/ijms160921975

22. Wang X, Chen X, Yang P, Wang L, Han J. Barcoding the Dendrobium (Orchidaceae) species and analysis of the intragenomic variation based on the internal transcribed spacer 2. Biomed Res Int 2017;2017:2734960. https://doi.org/10.1155/2017/2734960

23. Liu H, Fang C, Zhang T, Guo L, Ye Q. Molecular authentication and differentiation of Dendrobium species by rDNA ITS region sequence analysis. AMB Express 2019;9:53. https://doi.org/10.1186/s13568-019-0767-8

24. Nordin FA, Saibeh K, Go R, Mangsor KN, Othman AS. Molecular phylogenetics of the orchid genus Spathoglottis (Orchidaceae: Collabieae) in Peninsular Malaysia and Borneo. Forests 2022;13:2079. https://doi.org/10.3390/f13122079

25. Schuiteman A. Dendrobium (Orchidaceae): To split or not split? Gard Bull Singapore 2011;63:245-57.

26. Manokar J, Balasubramani SP, Venkatasubramanian P. Nuclear ribosomal DNA-ITS region based molecular marker to distinguish Gmelina arborea Roxb. Ex Sm. from its substitutes and adulterants. J Ayurveda Integr Med 2018;9:290-3. https://doi.org/10.1016/j.jaim.2017.10.001

27. Zhang J, Chi X, Zhong J, Fernie A, Alseekh S, Huang L, et al. Extensive nrDNA ITS polymorphism in Lycium: Non-concerted evolution and the identification of pseudogenes. Front Plant Sci 2022;13:984579. https://doi.org/10.3389/fpls.2022.984579

28. Salazar GA, Chase MW, Soto Arenas MA, Ingrouille M. Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): Evidence from plastid and nuclear DNA sequences. Am J Bot 2003;90:777-95. https://doi.org/10.3732/ajb.90.5.777

29. Lyons DM, Lauring AS. Evidence for the selective basis of transition-to-transversion substitution Bias in two RNA viruses. Mol Biol Evol 2017;34:3205-15. https://doi.org/10.1093/molbev/msx251

30. Kumar S. Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics 1996;143:537-48. https://doi.org/10.1093/genetics/143.1.537

31. Bohlin J, Eldholm V, Pettersson JH, Brynildsrud O, Snipen L. The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics 2017;18:151. https://doi.org/10.1186/s12864-017-3543-7

32. Huang W, Fang Z. Different amino acids inhibit or promote rhizome proliferation and differentiation in Cymbidium goeringii. Hortic Sci 2021;56:79-84. https://doi.org/10.21273/HORTSCI15441-20

33. Hong Y, Luo Y, Gao Q, Ren C, Yuan Q, Yang QE. Phylogeny and reclassification of Aconitum subgenus Lycoctonum (Ranunculaceae). PLoS One 2017;12:e0171038. https://doi.org/10.1371/journal.pone.0171038

34. Kimura M. The role of compensatory neutral mutations in molecular evolution. J Genet 1985;64:7-19. https://doi.org/10.1007/BF02923549

35. Saha PS, Sengupta M, Jha S. Ribosomal DNA ITS1, 5.8S and ITS2 secondary structure, nuclear DNA content and phytochemical analyses reveal distinctive characteristics of four subclades of Protasparagus. J Syst Evol 2017;55:54-70. https://doi.org/10.1111/jse.12221

36. Roy SC, Moitra K, De Sarker D. Assessment of genetic diversity among four orchids based on ddRAD sequencing data for conservation purposes. Physiol Mol Biol Plants 2017;23:169-83. https://doi.org/10.1007/s12298-016-0401-z

37. Ashfaq M, Paul Hebert DN, Sajjad Mirza M, Arif M, Shahid M, Ghulam S, et al. Genetic diversity indices and neutrality tests (Fu's Fs and Tajima's D) in the mtCOI-5' (barcode) sequences of putative species in Bemisia tabaci complex from Pakistan and India. PLoS One 2014;9(5):e97268. https://doi.org/10.1371/journal.pone.0097268

Article Metrics
68 Views 8 Downloads 76 Total

Year

Month

Related Search

By author names

Similar Articles

Identification, evaluation and optimization of a minimum simple sequence repeat marker set for triticale breeding

W.C. Botes and D. Bitalo

Repetitive PCR based detection of Genetic Diversity in Xanthomonas axonopodis pv citri Strains

Minhaj Arshiya, Alka Suryawanshi, Digamber More, Mirza Mushtaq Vaseem Baig

Genetic diversity and phylogenetic analyses of culturable extremely haloarchaea isolated from marine solar saltern pond in Mumbai, India

Dipak T. Nagrale , Renu, Priyanka Das

Phenotypic and genotypic diversity of Xanthomonas axonopodis pv. manihotis causing bacterial blight disease of cassava in Kenya

Mary N. Chege , Fred Wamunyokoli, Joseph Kamau, Evans N. Nyaboga

Assessment of genetic diversity in Shorea robusta: an economically important tropical tree species

Giridara-Kumar Surabhi, Subhankar Mohanty, Rajesh Kumar Meher, Arup Kumar Mukherjee, Lakshmi Narayana R.Vemireddy

Comparative morphological, histological, and RAPD analysis of Columba livia domestica strains

Dalia A. Sabry, Yosra A. Fouda

Heritability, genetic advance, and correlation studies of morpho-agronomic traits and brix in Burkina Faso sweet stalk sorghum genotypes

Nerbéwendé Sawadogo, Inoussa Drabo, Nofou Ouédraogo, Wendmanegda Hermann Tondé, Tewendé Lionel Kevin Béré, Josiane Tiendrébéogo, Gilbert Compaoré, Mahamadi Hamed Ouédraogo, Kiswendsida Romaric Nanema, Pauline Bationo-Kando

Phenotypic characterization and genetic diversity of the Khiew-Phalee chicken (Gallus gallus): A fighting cock originating from Uttaradit, Thailand

Siriwadee Phromnoi, Preeda Lertwatcharasarakul, Wallaya Phongphaew, Pisit Poolprasert

Phylogenetic analysis of Omicron subvariants in Vietnam

Phuoc Huynh, Huyen Thi Thuong Nguyen, Quan Ke Thai

Molecular Phylogeny of Balsams (Genus Impatiens) Based on ITS Regions of Nuclear Ribosomal DNA Implies Two Colonization Events in South India

P. P. Shajitha, N. R. Dhanesh, P. J. Ebin, Laly Joseph, Aneesha Devassy, Reshma John, Jomy Augustine, Linu Mathew

Bio-prospecting of marine-derived fungi with special reference to production of keratinase enzyme - A need-based optimization study

P. Samuel, M. Maheswari, J. Vijayakumar, T. Selvarathinam, K. Amirtharaj, R. Deenathayalan

Molecular detection and antimicrobial resistance of Clostridium perfringens isolated from diabetic patients and bullet wounds

Aliaa Mohamed Hmood, Maysa S M Al-Shukri, Alaa H Al-Charrakh