Systems biology approaches of Scopoletin reveal target potential biomarkers and its associated signaling pathways in colon cancer

Kunnathur Murugesan Sakthivel Rajan Radha Rasmi Loganathan Chandramani Priya Dharshini Balasubramanian Ramesh   

Open Access   

Published:  May 02, 2024

DOI: 10.7324/JABB.2024.147899
Abstract

Scopoletin (Sc) is a coumarin phytoalexin which is biosynthesized by numerous plants including Scopolia carniolica, Scopolia japonica, Artemisia scoparia, and Viburnum prunifolium. The main goal of this study was to perform a systemic bioinformatics on the anti-colon cancer effects of Scopoletin. A holistic bioinformatics strategy was developed to predict the mechanisms by Sc that protects colon health. Comparative toxicogenomics database and DisGeNET database were used to discover potential genes. The protein-protein interactions (PPIs) PPI network was constructed using STRING and visualized by Cytoscape software. Based on a multi-pathway network using the molecular complex detection plugin of Cytoscape, it was observed that Sc may protect colon cancer by suppressing the oxidative stress and inhibiting inflammation through regulation of nuclear factor erythroid-related factor-2 signaling pathway, inflammation associated pathways, apoptosis pathway, autophagy pathway, cell proliferation signaling, and insulin sensitizing pathway. Gene ontology analysis generates highly interconnected pathways that are the basis for biological process, molecular function, and cellular components, as well as pathway enrichment analysis. Our findings contributed to the investigation of molecular mechanisms and the identification of potential target biomarkers for the treatment of colon cancer.


Keyword:     Scopoletin Colon cancer Autophagy Apoptosis Systems biology gene ontology


Citation:

Sakthivel KM, Rasmi RR, Dharshini LC, Ramesh B. Systems biology approaches of Scopoletin reveal target potential biomarkers and its associated signaling pathways in colon cancer. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.147899

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers 2015;1:15065. https://doi.org/10.1038/nrdp.2015.65

2. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008;135:1079-99. https://doi.org/10.1053/j.gastro.2008.07.076

3. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87:159-70. https://doi.org/10.1016/S0092-8674(00)81333-1

4. Zeki SS, Graham TA, Wright NA. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol 2011;8:90-100. https://doi.org/10.1038/nrgastro.2010.211

5. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67. https://doi.org/10.1016/0092-8674(90)90186-I

6. Wahl O, Oswald M, Tretzel L, Herres E, Arend J, Efferth T. Inhibition of tumor angiogenesis by antibodies, synthetic small molecules and natural products. Curr Med Chem 2011;18:3136-55. https://doi.org/10.2174/092986711796391570

7. Efferth T, Grassmann R. Impact of viral oncogenesis on responses to anti-cancer drugs and irradiation. Crit Rev Oncog 2000;11:165-87.

8. Dou Y, Tong B, Wei Z, Li Y, Xia Y, Dai Y. Scopoletin suppresses IL-6 production from fibroblast-like synoviocytes of adjuvant arthritis rats induced by IL-1β stimulation. Int J Immunopharmacol 2013;17:1037-43. https://doi.org/10.1016/j.intimp.2013.10.011

9. Liu XL, Zhang L, Fu XL, Chen K, Qian BC. Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol Sin 2001;22:929-33.

10. Witaicenis A, Seito LN, da Silveria Chagas A, de Almeida LD Jr., Luchini AC, Rodrigues Orsi P, et al. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 2014;21:240-6. https://doi.org/10.1016/j.phymed.2013.09.001

11. Ding Z, Dai Y, Wang Z. Hypouricemic action of scopoletin arising from xanthine oxidase inhibition and uricosuric activity. Planta Med 2005;71:183-5. https://doi.org/10.1055/s-2005-837789

12. Sakthivel KM, Vishnupriya S, Dharshini LC, Rasmi RR, Ramesh B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of scopoletin. J Pharm Pharmacol 2022;74:147-61. https://doi.org/10.1093/jpp/rgab047

13. Bhattacharyya SS, Paul S, De A, Das D, Samadder A, Boujedaini N, et al. Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: Cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicol Appl Pharmacol 2011;253:270-81. https://doi.org/10.1016/j.taap.2011.04.010

14. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The comparative toxicogenomics database: Update 2017. Nucleic Acids Res 2017;45:D972-8. https://doi.org/10.1093/nar/gkw838

15. Shijia W, Hong L, Yongheng B. Nrf2 in cancers: A double-edged sword. Cancer Med 2019;8:2252-67. https://doi.org/10.1002/cam4.2101

16. Terzi? J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010;138:2101-14. https://doi.org/10.1053/j.gastro.2010.01.058

17. Watson AJ. Apoptosis and colorectal cancer. Gut 2004;53:1701-9. https://doi.org/10.1136/gut.2004.052704

18. Devenport SN, Shah YM. Functions and implications of autophagy in colon cancer. Cells 2019;8:1349. https://doi.org/10.3390/cells8111349

19. Hsu HP, Lai MD, Lee JC, Yen MC, Weng TY, Chen WC, et al. Mucin 2 silencing promotes colon cancer metastasis through interleukin-6 signaling. Sci Rep 2017;7:5823. https://doi.org/10.1038/s41598-017-04952-7

20. Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep 2015;11: 1566-72. https://doi.org/10.3892/mmr.2014.2914

21. Bartolome RA, Barderas R, Torres S, Fernandez-Acenero MJ, Mendes M, Garcia-Foncillas J, et al. Cadherin-17 interacts with α2β1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis. Oncogene 2014;33:1658-69. https://doi.org/10.1038/onc.2013.117

22. Blum W, Pecze L, Rodriguez JW, Steinauer M, Schwaller B. Regulation of calretinin in malignant mesothelioma is mediated by septin 7 binding to the CALB2 promoter. BMC Cancer 2018;18:475. https://doi.org/10.1186/s12885-018-4385-7

23. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017;45:D362-8. https://doi.org/10.1093/nar/gkw937

24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504. https://doi.org/10.1101/gr.1239303

25. Li CY, Cai JH, Tsai JJ, Wang CC. Identification of hub genes associated with development of head and neck squamous cell carcinoma by integrated bioinformatics analysis. Front Oncol 2020;10:681. https://doi.org/10.3389/fonc.2020.00681

26. Bandettini WP, Kellman P, Mancini C, Booker OJ, Vasu S, Leung SW, et al. MultiContrast delayed enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: A clinical validation study. J Cardiovasc Magn Reson 2012;14:83. https://doi.org/10.1186/1532-429X-14-83

27. Ge SX, Jung D, Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020;36:2628-9. https://doi.org/10.1093/bioinformatics/btz931

28. Reimand J, Isserlin R, Voisin, V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 2019;14:482-517. https://doi.org/10.1038/s41596-018-0103-9

29. Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M. NRF2 targeting: A promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med 2011;17:363-71. https://doi.org/10.1016/j.molmed.2011.02.006

30. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid

2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 2010;690:12-23. https://doi.org/10.1016/j.mrfmmm.2009.09.007

31. Weingberg JB. Nitric oxide synthase 2 and cyclooxygenase 2 interactions in inflammation. Immunol Res 2000;22:319-41. https://doi.org/10.1385/IR:22:2-3:319

32. Lindqvist LM, Vaux DL. BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy. Autophagy 2014;10:1474-5. https://doi.org/10.4161/auto.29639

33. Lee KH, Lee MS, Cha EY, Sul JY, Lee JS, Kim JS, et al. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep 2017;15:2163-73. https://doi.org/10.3892/mmr.2017.6254

34. Sebastiano MR, Konstantinidou G. Targeting long chain acyl-CoA synthetases for cancer therapy. Int J Mol Sci 2019;20:3624. https://doi.org/10.3390/ijms20153624

35. Mulyawan IM. Role of Ki67 protein in colorectal cancer. Int J Res Med Sci 2019;7:647. https://doi.org/10.18203/2320-6012.ijrms20190374

36. Carreras-Sangra N, Tome-Amat J, Garcia-Ortega L, Batt CA, Onaderra M, Martinez-del-Pozo A, et al. Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin α-sarcin. Protein Eng Des Sel 2012;25:425-35. https://doi.org/10.1093/protein/gzs032

37. Ou Y, Chen P, Zhou Z, Li C, Li J, Tajima K, et al. Associations between variants on ADIPOQ and ADIPOR2 with colorectal cancer risk: A Chinese case-control study and updated meta-analysis. BMC Med Genet 2014;15:137. https://doi.org/10.1186/s12881-014-0137-y

Article Metrics
23 Views 2 Downloads 25 Total

Year

Month

Related Search

By author names