Next-generation subunit vaccine delivery systems: Design, applications, and prospects

Fredmoore Orosco Deborah Nicdao   

Open Access   

Published:  May 02, 2024

DOI: 10.7324/JABB.2024.170655

Subunit vaccine delivery systems have emerged as groundbreaking strategies to enhance immunogenicity and efficacy, overcoming the limitations of traditional vaccine approaches. This review article delves into the vast landscape of subunit vaccine delivery systems, encompassing diverse platforms, such as polymer-based, lipid-based, micelle-based, phage-based, hydrogel-based, inorganic-based, and emulsion-based carriers. This review aimed to comprehensively explore the advancements, challenges, and potential of these delivery systems in revolutionizing vaccine development. Key findings revealed that polymer-based systems offer tunable properties for sustained release, while lipid-based and micelle-based carriers enable efficient encapsulation of hydrophobic antigens. Phage-based platforms leverage host–pathogen interactions, whereas hydrogel-based carriers provide localized delivery and adjuvant effects. Inorganic nanoparticles and emulsions offer targeted delivery and improved immune responses. These findings offer opportunities to enhance the immunogenicity of subunit vaccines, optimize antigen delivery, and tailor responses to specific diseases. This review can guide researchers, clinicians, and policymakers in harnessing the strengths of diverse delivery systems to improve vaccination strategies. By shedding light on their design, applications, and impacts, this review serves as a roadmap for the development of next-generation vaccines with the potential to transform global health-care paradigms.

Keyword:     Adjuvants Immune response Infectious diseases Subunit vaccines Vaccine delivery systems


Orosco F, Nicdao D. Next-generation subunit vaccine delivery systems: Design, applications, and prospects. J App Biol Biotech. 2024. Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci U S A 2014;111:12288-93.

2. Tognotti E. The eradication of smallpox, a success story for modern medicine and public health: What lessons for the future? J Infect Dev Ctries 2010;4:264-6.

3. Finco O, Rappuoli R. Designing vaccines for the twenty-first century society. Front Immunol 2014;5:12.

4. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med 2014;6:708-20.

5. Mahedi MR, Rawat A, Rabbi F, Babu KS, Tasayco ES, Areche FO, et al. Understanding the global transmission and demographic distribution of Nipah Virus (NiV). Res J Pharm Technol 2023;16:3588-94.

6. Yadav DK, Yadav N, Khurana SM. Vaccines: Present status and applications. In: Verma AS, Singh A, editors. Animal Biotechnology. 2nd ed., Ch. 26. Boston: Academic Press; 2020. p. 523-42. Available from: [Last accessed on 2023 Aug 19].

7. Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016;120:1-14.

8. Pollard AJ, Bijker EM. A guide to vaccinology: From basic principles to new developments. Nat Rev Immunol 2021;21:83-100.

9. Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, et al. Porcine epidemic diarrhea virus: An updated overview of virus epidemiology, virulence variation patterns and virus-host interactions. Viruses 2022;14:2434.

10. Brito LA, O'Hagan DT. Designing and building the next generation of improved vaccine adjuvants. J Control Release 2014;190:563-79.

11. Levitz SM, Golenbock DT. Beyond empiricism: Informing vaccine development through innate immunity research. Cell 2012;148:1284-92.

12. Lee KL, Twyman RM, Fiering S, Steinmetz NF. Virus-based nanoparticles as platform technologies for modern vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:554-78.

13. Mooney M, McWeeney S, Canderan G, Sékaly RP. A systems framework for vaccine design. Curr Opin Immunol 2013;25:551-5.

14. Odendall C, Kagan JC. Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect 2017;19:229-37.

15. Schenten D, Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv Immunol 2011;109:87-124.

16. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419-26.

17. Liu Z, Qiu D, Wang F, Taylor JA, Zhang M. Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism. Mater Charact 2015;106:1-10.

18. Austyn JM. Dendritic cells in the immune system-history, lineages, tissues, tolerance, and immunity. In: Myeloid Cells in Health and Disease. Hoboken: John Wiley and Sons, Ltd.; 2017. p. 155- 207. Available from: [Last accessed on 2023 Aug 19].

19. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends Immunol 2002;23:445-9.

20. Delaloye J, Roger T, Steiner-Tardivel QG, Le Roy D, Knaup Reymond M, Akira S, et al. Innate immune sensing of modified Vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog 2009;5:e1000480.

21. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011;12:509-17.

22. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52.

23. Janeway CA Jr., Travers P, Walport M, Shlomchik MJ. Immunobiology. 5th ed. New York: Garland Science; 2001.

24. Zhang N, Bevan MJ. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011;35:161-8.

25. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol 2013;31:443-73.

26. Fehres CM, Unger WW, Garcia-Vallejo JJ, van Kooyk Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol 2014;5:149.

27. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010;28:445-89.

28. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4?T cells: Differentiation and functions. Clin Dev Immunol 2012;2012:925135.

29. Harwood NE, Batista FD. Early events in B cell activation. Annu Rev Immunol 2010;28:185-210.

30. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol 2015;15:160-71.

31. MuŽíková G, Laga R. Macromolecular systems for vaccine delivery. Physiol Res 2016;65:S203-16.

32. Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, et al. Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunother 2009;32:118-28.

33. Azad N, Rojanasakul Y. Vaccine delivery--current trends and future. Curr Drug Deliv 2006;3:137-46.

34. Johansen P, Kündig TM. Parenteral vaccine administration: Tried and true. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit Vaccine Delivery. Advances in Delivery Science and Technology. New York: Springer; 2015. p. 261-86. Available from: [Last accessed on 2023 Aug 19].

35. Herzog C. Influence of parenteral administration routes and additional factors on vaccine safety and immunogenicity: A review of recent literature. Expert Rev Vaccines 2014;13:399-415.

36. Lambert PH, Laurent PE. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine 2008;26:3197-208.

37. Hunter P, Fryhofer SA, Szilagyi PG. Vaccination of adults in general medical practice. Mayo Clin Proc 2020;95:169-83.

38. Lemoine C, Thakur A, Krajišnik D, Guyon R, Longet S, Razim A, et al. Technological approaches for improving vaccination compliance and coverage. Vaccines (Basel) 2020;8:304.

39. Bacon A, Makin J, Sizer PJ, Jabbal-Gill I, Hinchcliffe M, Illum L, et al. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun 2000;68:5764-70.

40. Nevagi RJ, Skwarczynski M, Toth I. Polymers for subunit vaccine delivery. Eur Polym J 2019;114:397-410.

41. Sarmento B, das Neves J. Chitosan-based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics. Hoboken: John Wiley and Sons; 2012. p. 691.

42. Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, et al. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010;8:1962-87.

43. Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 2007;25:2085-94.

44. Li X, Min M, Du N, Gu Y, Hode T, Naylor M, et al. Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine. Clin Dev Immunol 2013;2013:e387023.

45. Marasini N, Skwarczynski M, Toth I. Intranasal delivery of nanoparticle-based vaccines. Ther Deliv 2017;8:151-67.

46. Jain S, Khomane K, Jain AK, Dani P. Nanocarriers for transmucosal vaccine delivery. Curr Nanosci 2011;7:160-77.

47. Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010;28:7690-8.

48. Otterlei M, Ostgaard K, Skjåk-Braek G, Smidsrød O, Soon-Shiong P, Espevik T. Induction of cytokine production from human monocytes stimulated with alginate. J Immunother (1991) 1991;10:286-91.

49. Farjaha A, Owlia P, Siadat SD, Mousavi SF, Shafieeardestani M. Conjugation of alginate to a synthetic peptide containing T-and B-cell epitopes as an induction for protective immunity against Pseudomonas aeruginosa. J Biotechnol 2014;192:240-7.

50. Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 2007;29:17-25.

51. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): A review. Vet Med 2008;53:397-411.

52. Kong WH, Sung DK, Kim H, Yang JA, Ieronimakis N, Kim KS, et al. Self-adjuvanted hyaluronate--antigenic peptide conjugate for transdermal treatment of muscular dystrophy. Biomaterials 2016;81:93-103.

53. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002;195:99-111.

54. Gariboldi S, Palazzo M, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, et al. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol 2008;181:2103-10.

55. Lees A, Finkelman F, Inman JK, Witherspoon K, Johnson P, Kennedy J, et al. Enhanced immunogenicity of protein-dextran conjugates: I. Rapid stimulation of enhanced antibody responses to poorly immunogenic molecules. Vaccine 1994;12:1160-6.

56. Shinchi H, Crain B, Yao S, Chan M, Zhang SS, Ahmadiiveli A, et al. Enhancement of the immunostimulatory activity of a TLR7 ligand by conjugation to polysaccharides. Bioconjug Chem 2015;26:1713-23.

57. Zhang W, An M, Xi J, Liu H. Targeting CpG adjuvant to lymph node via dextran conjugate enhances antitumor immunotherapy. Bioconjug Chem 2017;28:1993-2000.

58. Luo M, Shao B, Nie W, Wei XW, Li YL, Wang BL, et al. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Sci Rep 2015;5:11062.

59. Zhang YQ, Tsai YC, Monie A, Hung CF, Wu TC. Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine 2010;28:5212-9.

60. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int J Pharm 2004;278:1-23.

61. Jameela SR, Suma N, Misra A, Raghuvanshi R, Ganga S, Jayakrishnan A. Poly(ε-caprolactone) microspheres as a vaccine carrier. Curr Sci 1996;70:669-71.

62. Slobbe L, Medlicott N, Lockhart E, Davies N, Tucker I, Razzak M, et al. A prolonged immune response to antigen delivered in poly (epsilon-caprolactone) microparticles. Immunol Cell Biol 2003;81:185-91.

63. Cruz LJ, Tacken PJ, Eich C, Rueda F, Torensma R, Figdor CG. Controlled release of antigen and toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine (Lond) 2017;12:491-510.

64. Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011;63:943-55.

65. Bailey BA, Desai KH, Ochyl LJ, Ciotti SM, Moon JJ, Schwendeman SP. Self-encapsulating poly(lactic-co-glycolic acid) (PLGA) microspheres for intranasal vaccine delivery. Mol Pharm 2017;14:3228-37.

66. Inbaraj BS, Chen BH. In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. Int J Nanomedicine 2012;7:4419-32.

67. Matsusaki M, Hiwatari Ken-Ichiro, Higashi M, Kaneko T, Akashi M. Stably-dispersed and surface-functional bionanoparticles prepared by self-assembling amphipathic polymers of hydrophilic poly(γ-glutamic acid) bearing hydrophobic amino acids. Chem Lett 2004;33:398-9.

68. Uto T, Wang X, Sato K, Haraguchi M, Akagi T, Akashi M, et al. Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J Immunol 2007;178:2979-86.

69. Akagi T, Wang X, Uto T, Baba M, Akashi M. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 2007;28:3427-36.

70. Bettencourt A, Almeida AJ. Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 2012;29:353-67.

71. Kreuter J, Speiser PP. New adjuvants on a polymethylmethacrylate base. Infect Immun 1976;13:204-10.

72. Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J Control Release 1990;11:205-14.

73. Voltan R, Castaldello A, Brocca-Cofano E, Altavilla G, Caputo A, Laus M, et al. Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharm Res 2007;24:1870-82.

74. Bolhassani A. Lipid-based delivery systems in development of genetic and subunit vaccines. Mol Biotechnol 2023;65:669-98.

75. Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical design of viral vaccines based on avant-garde nanocarriers: A multi-domain narrative review. Biomedicines 2021;9:520.

76. Okay S, Özcan ÖÖ, Karahan M, Okay S, Özcan ÖÖ, Karahan M. Nanoparticle-based delivery platforms for mRNA vaccine development. AIMS Biophys 2020;7:323-38.

77. Tretiakova DS, Vodovozova EL. Liposomes as adjuvants and vaccine delivery systems. Biochem (Mosc) Suppl Ser A Membr Cell Biol 2022;16:1-20.

78. Luwi NE, Ahmad S, Azlyna AS, Nordin A, Sarmiento ME, Acosta A, et al. Liposomes as immunological adjuvants and delivery systems in the development of tuberculosis vaccine: A review. Asian Pac J Trop Med 2022;15:7.

79. Fobian SF, Cheng Z, Ten Hagen TL. Smart lipid-based nanosystems for therapeutic immune induction against cancers: Perspectives and outlooks. Pharmaceutics 2021;14:26.

80. De Serrano LO, Burkhart DJ. Liposomal vaccine formulations as prophylactic agents: Design considerations for modern vaccines. J Nanobiotechnology 2017;15:83.

81. Khademi F, Taheri RA, Momtazi-Borojeni AA, Farnoosh G, Johnston TP, Sahebkar A. Potential of cationic liposomes as adjuvants/delivery systems for tuberculosis subunit vaccines. Rev Physiol Biochem Pharmacol 2018;175:47-69.

82. Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, et al. Nanotechnologies in delivery of DNA and mRNA vaccines to the nasal and pulmonary mucosa. Nanomaterials (Basel) 2022;12:226.

83. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006;12:4669-84.

84. Pavot V, Rochereau N, Primard C, Genin C, Perouzel E, Lioux T, et al. Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Control Release 2013;167:60-7.

85. Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, et al. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm Res 2015;32:311-20.

86. Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release 2009;136:161-9.

87. Jain AK, Goyal AK, Mishra N, Vaidya B, Mangal S, Vyas SP. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm 2010;387:253-62.

88. Luo Z, Li P, Deng J, Gao N, Zhang Y, Pan H, et al. Cationic polypeptide micelle-based antigen delivery system: A simple and robust adjuvant to improve vaccine efficacy. J Control Release 2013;170:259-67.

89. Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, et al. Nanovaccine loaded with poly I: C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 2015;38:50-60.

90. Noh YW, Hong JH, Shim SM, Park HS, Bae HH, Ryu EK, et al. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew Chem Int Ed Engl 2013;52:7684-9.

91. Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release 2014;191:24-33.

92. Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee CC, Opara C, et al. pH-responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 2013;7:3912-25.

93. Boudier A, Aubert-Pouëssel A, Louis-Plence P, Gérardin C, Jorgensen C, Devoisselle JM, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials 2009;30:233-41.

94. Boudier A, Aubert-Pouëssel A, Mebarek N, Chavanieu A, Quentin J, Martire D, et al. Development of tripartite polyion micelles for efficient peptide delivery into dendritic cells without altering their plasticity. J Control Release 2011;154:156-63.

95. Fu Y, Li J. A novel delivery platform based on bacteriophage MS2 virus-like particles. Virus Res 2016;211:9-16.

96. Peachman KK, Li Q, Matyas GR, Shivachandra SB, Lovchik J, Lyons RC, et al. Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. Clin Vaccine Immunol 2012;19:11-6.

97. Tao P, Mahalingam M, Rao VB. Highly effective soluble and bacteriophage T4 nanoparticle plague vaccines against Yersinia pestis. Methods Mol Biol 2016;1403:499-518.

98. Sathaliyawala T, Rao M, Maclean DM, Birx DL, Alving CR, Rao VB. Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: A novel in vitro approach to construct multicomponent HIV vaccines. J Virol 2006;80:7688-98.

99. Ren ZJ, Tian CJ, Zhu QS, Zhao MY, Xin AG, Nie WX, et al. Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice. Vaccine 2008;26:1471-81.

100. Orosco FL. Current progress in diagnostics, therapeutics, and vaccines for African swine fever virus. Vet Integr Sci 2023; 21:751-81.

101. Wu J, Tu C, Yu X, Zhang M, Zhang N, Zhao M, et al. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: A powerful immunological approach. J Virol Methods 2007;139:50-60.

102. Cao YC, Shi QC, Ma JY, Xie QM, Bi YZ. Vaccination against very virulent infectious bursal disease virus using recombinant T4 bacteriophage displaying viral protein VP2. Acta Biochim Biophys Sin (Shanghai) 2005;37:657-64.

103. Shivachandra SB, Rao M, Janosi L, Sathaliyawala T, Matyas GR, Alving CR, et al. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins. Virology 2006;345:190-8.

104. Li Q, Shivachandra SB, Zhang Z, Rao VB. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: A novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J Mol Biol 2007;370:1006-19.

105. Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, et al. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog 2013;9:e1003495.

106. Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017;114:116-31.

107. Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: Non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015;6:755.

108. Deng L, Roose K, Job ER, De Rycke R, Van Hamme E, Gonçalves A, et al. Oral delivery of Escherichia coli persistently infected with virus. J Control Release 2017;264:55-65.

109. Orosco FL. Immune evasion mechanisms of porcine epidemic diarrhea virus: A comprehensive review. Vet Integr Sci 2024;22:171-92.

110. Prisco A, De Berardinis P. Filamentous bacteriophage fd as an antigen delivery system in vaccination. Int J Mol Sci 2012;13:5179-94.

111. Samoylova TI, Braden TD, Spencer JA, Bartol FF. Immunocontraception: Filamentous bacteriophage as a platform for vaccine development. Curr Med Chem 2017;24:3907-20.

112. Nicastro J, Sheldon K, Slavcev RA. Bacteriophage lambda display systems: Developments and applications. Appl Microbiol Biotechnol 2014;98:2853-66.

113. Hernando-Pérez M, Lambert S, Nakatani-Webster E, Catalano CE, de Pablo PJ. Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 2014;5:4520.

114. Sternberg N, Hoess RH. Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci U S A 1995;92:1609-13.

115. Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1517.

116. Chang JR, Song EH, Nakatani-Webster E, Monkkonen L, Ratner DM, Catalano CE. Phage lambda capsids as tunable display nanoparticles. Biomacromolecules 2014;15:4410-9.

117. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE. Bacteriophage lambda stabilization by auxiliary protein gpD: Timing, location, and mechanism of attachment determined by cryo-EM. Structure 2008;16:1399-406.

118. González-Cano P, Gamage LN, Marciniuk K, Hayes C, Napper S, Hayes S, et al. Lambda display phage as a mucosal vaccine delivery vehicle for peptide antigens. Vaccine 2017;35:7256-63.

119. Gamage LN, Ellis J, Hayes S. Immunogenicity of bacteriophage lambda particles displaying porcine circovirus 2 (PCV2) capsid protein epitopes. Vaccine 2009;27:6595-604.

120. Guo F, Liu Z, Fang PA, Zhang Q, Wright ET, Wu W, et al. Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proc Natl Acad Sci U S A 2014;111:E4606-14.

121. Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung'u T, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 2015;348:aaa0698.

122. Tan GH, Yusoff K, Seow HF, Tan WS. Antigenicity and immunogenicity of the immunodominant region of hepatitis B surface antigen displayed on bacteriophage T7. J Med Virol 2005;77:475-80.

123. Xu H, Bao X, Lu Y, Liu Y, Deng B, Wang Y, et al. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV). Vet Microbiol 2017;205:46-52.

124. Hashemi H, Pouyanfard S, Bandehpour M, Noroozbabaei Z, Kazemi B, Saelens X, et al. Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge. PLoS One 2012;7:e45765.

125. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 2008;380:252-63.

126. Tumban E, Peabody J, Tyler M, Peabody DS, Chackerian B. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus. PLoS One 2012;7:e49751.

127. Basu R, Zhai L, Contreras A, Tumban E. Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine 2018;36:1256-64.

128. Heal KG, Hill HR, Stockley PG, Hollingdale MR, Taylor-Robinson AW. Expression and immunogenicity of a liver stage malaria epitope presented as a foreign peptide on the surface of RNA-free MS2 bacteriophage capsids. Vaccine 1999;18:251-8.

129. Dong YM, Zhang GG, Huang XJ, Chen L, Chen HT. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease. Antiviral Res 2015;117:39-43.

130. Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, et al. The true story and advantages of RNA phage capsids as nanotools. Intervirology 2016;59:74-110.

131. Rumnieks J, Tars K. Crystal structure of the maturation protein from bacteriophage Qβ. J Mol Biol 2017;429:688-96.

132. Brown SD, Fiedler JD, Finn MG. Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry 2009;48:11155-7.

133. Vasiljeva I, Kozlovska T, Cielens I, Strelnikova A, Kazaks A, Ose V, et al. Mosaic Qbeta coats as a new presentation model. FEBS Lett 1998;431:7-11.

134. Kündig TM, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM, Fulurija A, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 2006;117:1470-6.

135. Bessa J, Schmitz N, Hinton HJ, Schwarz K, Jegerlehner A, Bachmann MF. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: Implications for vaccine design. Eur J Immunol 2008;38:114-26.

136. Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017;2:3.

137. Roth GA, Gale EC, Alcántara-Hernández M, Luo W, Axpe E, Verma R, et al. Injectable hydrogels for sustained codelivery of subunit vaccines enhance humoral immunity. ACS Cent Sci 2020;6:1800-12.

138. Li X, Galliher-Beckley A, Huang H, Sun X, Shi J. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus. Vaccine 2013;31:4508-15.

139. Friedrich BM, Beasley DW, Rudra JS. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus. Vaccine 2016;34:5479-82.

140. Wang Y, Zhang J, Wang Y, Wang K, Wei H, Shen L. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon 2018;155:9-20.

141. Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, et al. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018;25:278-92.

142. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 2016;39:1181-92.

143. Wu Q, Gong C, Shi S, Wang Y, Huang M, Yang L, et al. Mannan loaded biodegradable and injectable thermosensitive PCL-PEG-PCL hydrogel for vaccine delivery. Soft Mater 2012;10:472-86.

144. Bobbala S, Tamboli V, McDowell A, Mitra AK, Hook S. Novel injectable pentablock copolymer based thermoresponsive hydrogels for sustained release vaccines. AAPS J 2016;18:261-9.

145. Song H, Huang P, Niu J, Shi G, Zhang C, Kong D, et al. Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 2018;159:119-29.

146. Sun Z, Liang J, Dong X, Wang C, Kong D, Lv F. Injectable hydrogels coencapsulating granulocyte-macrophage colony-stimulating factor and ovalbumin nanoparticles to enhance antigen uptake efficiency. ACS Appl Mater Interfaces 2018;10:20315-25.

147. Song H, Yang P, Huang P, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 2019;9:2299-314.

148. Asai D, Fukuda T, Morokuma K, Funamoto D, Yamaguchi Y, Mori T, et al. Injectable polypeptide hydrogel depot system for assessment of the immune response-inducing efficacy of sustained antigen release alone. Macromol Biosci 2019;19:e1900167.

149. Zhang L, Yang W, Hu C, Wang Q, Wu Y. Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. Int J Nanomedicine 2018;13:2973-87.

150. Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, et al. Nanoparticle-based delivery systems for vaccines. Vaccines (Basel) 2022;10:1946.

151. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7:3926-38.

152. Stone JW, Thornburg NJ, Blum DL, Kuhn SJ, Wright DW, Crowe JE Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology 2013;24:295102.

153. Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014;9:237-51.

154. Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010;21:195101.

155. Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci 2011;44:653-9.

156. Ingle SG, Pai RV, Monpara JD, Vavia PR. Liposils: An effective strategy for stabilizing paclitaxel loaded liposomes by surface coating with silica. Eur J Pharm Sci 2018;122:51-63.

157. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011;121:2768-80.

158. Niut Y, Popatt A, Yu M, Karmakar S, Gu W, Yu C. Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv 2012;3:1217-37.

159. He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T, Bell SJ. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 2000;7:899-903.

160. Joyappa DH, Kumar CA, Banumathi N, Reddy GR, Suryanarayana VV. Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet Microbiol 2009;139:58-66.

161. Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, et al. Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 2012;12:2003-12.

162. Wang C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine 2018;14:1349-60.

163. Dantas GP, Ferraz FS, Andrade LM, Costa GM. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem Biol Interact 2022;363:110023.

164. Chavda VP, Shah D. Self-emulsifying delivery systems: One step ahead in improving solubility of poorly soluble drugs. In: Ficai A, Grumezescu AM, editors. Nanostructures for Cancer Therapy. Micro and Nano Technologies. Ch. 25. Amsterdam: Elsevier; 2017. p. 653- 718. Available from: pii [Last accessed on 2023 Aug 19].

165. O'Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 2007;6:699-710.

166. Nasiri MI, Vora LK, Ershaid JA, Peng K, Tekko IA, Donnelly RF. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. Drug Deliv Transl Res 2022;12:881-96.

167. Lee JJ, Shim A, Lee SY, Kwon BE, Kim SR, Ko HJ, et al. Ready-to-use colloidal adjuvant systems for intranasal immunization. J Colloid Interface Sci 2016;467:121-8.

168. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008;3:145-50.

169. Lamaisakul S, Tantituvanont A, Lipipun V, Ritthidej G. Development of novel cationic microemulsion as parenteral adjuvant for influenza vaccine. Asian J Pharm Sci 2020;15:591-604.

170. Yang AQ, Yang HY, Guo SJ, Xie YE. MF59 adjuvant enhances the immunogenicity and protective immunity of the OmpK/Omp22 fusion protein from Acineterbacter baumannii through intratracheal inoculation in mice. Scand J Immunol 2019;90:e12769.

Article Metrics
56 Views 17 Downloads 73 Total



Related Search

By author names