Next-generation subunit vaccine delivery systems: Design, applications, and prospects

Fredmoore Orosco Deborah Nicdao   

Open Access   

Published:  May 02, 2024

DOI: 10.7324/JABB.2024.170655
Abstract

Subunit vaccine delivery systems have emerged as groundbreaking strategies to enhance immunogenicity and efficacy, overcoming the limitations of traditional vaccine approaches. This review article delves into the vast landscape of subunit vaccine delivery systems, encompassing diverse platforms, such as polymer-based, lipid-based, micelle-based, phage-based, hydrogel-based, inorganic-based, and emulsion-based carriers. This review aimed to comprehensively explore the advancements, challenges, and potential of these delivery systems in revolutionizing vaccine development. Key findings revealed that polymer-based systems offer tunable properties for sustained release, while lipid-based and micelle-based carriers enable efficient encapsulation of hydrophobic antigens. Phage-based platforms leverage host–pathogen interactions, whereas hydrogel-based carriers provide localized delivery and adjuvant effects. Inorganic nanoparticles and emulsions offer targeted delivery and improved immune responses. These findings offer opportunities to enhance the immunogenicity of subunit vaccines, optimize antigen delivery, and tailor responses to specific diseases. This review can guide researchers, clinicians, and policymakers in harnessing the strengths of diverse delivery systems to improve vaccination strategies. By shedding light on their design, applications, and impacts, this review serves as a roadmap for the development of next-generation vaccines with the potential to transform global health-care paradigms.


Keyword:     Adjuvants Immune response Infectious diseases Subunit vaccines Vaccine delivery systems


Citation:

Orosco F, Nicdao D. Next-generation subunit vaccine delivery systems: Design, applications, and prospects. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.170655

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci U S A 2014;111:12288-93. https://doi.org/10.1073/pnas.1402981111

2. Tognotti E. The eradication of smallpox, a success story for modern medicine and public health: What lessons for the future? J Infect Dev Ctries 2010;4:264-6. https://doi.org/10.3855/jidc.1204

3. Finco O, Rappuoli R. Designing vaccines for the twenty-first century society. Front Immunol 2014;5:12. https://doi.org/10.3389/fimmu.2014.00012

4. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med 2014;6:708-20. https://doi.org/10.1002/emmm.201403876

5. Mahedi MR, Rawat A, Rabbi F, Babu KS, Tasayco ES, Areche FO, et al. Understanding the global transmission and demographic distribution of Nipah Virus (NiV). Res J Pharm Technol 2023;16:3588-94. https://doi.org/10.52711/0974-360X.2023.00592

6. Yadav DK, Yadav N, Khurana SM. Vaccines: Present status and applications. In: Verma AS, Singh A, editors. Animal Biotechnology. 2nd ed., Ch. 26. Boston: Academic Press; 2020. p. 523-42. Available from: https://www.sciencedirect.com/science/article/pii [Last accessed on 2023 Aug 19]. https://doi.org/10.1016/B978-0-12-811710-1.00024-0

7. Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016;120:1-14. https://doi.org/10.1016/j.bcp.2016.05.001

8. Pollard AJ, Bijker EM. A guide to vaccinology: From basic principles to new developments. Nat Rev Immunol 2021;21:83-100. https://doi.org/10.1038/s41577-020-00479-7

9. Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, et al. Porcine epidemic diarrhea virus: An updated overview of virus epidemiology, virulence variation patterns and virus-host interactions. Viruses 2022;14:2434. https://doi.org/10.3390/v14112434

10. Brito LA, O'Hagan DT. Designing and building the next generation of improved vaccine adjuvants. J Control Release 2014;190:563-79. https://doi.org/10.1016/j.jconrel.2014.06.027

11. Levitz SM, Golenbock DT. Beyond empiricism: Informing vaccine development through innate immunity research. Cell 2012;148:1284-92. https://doi.org/10.1016/j.cell.2012.02.012

12. Lee KL, Twyman RM, Fiering S, Steinmetz NF. Virus-based nanoparticles as platform technologies for modern vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:554-78. https://doi.org/10.1002/wnan.1383

13. Mooney M, McWeeney S, Canderan G, Sékaly RP. A systems framework for vaccine design. Curr Opin Immunol 2013;25:551-5. https://doi.org/10.1016/j.coi.2013.09.014

14. Odendall C, Kagan JC. Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect 2017;19:229-37. https://doi.org/10.1016/j.micinf.2017.01.003

15. Schenten D, Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv Immunol 2011;109:87-124. https://doi.org/10.1016/B978-0-12-387664-5.00003-0

16. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419-26. https://doi.org/10.1038/nature06175

17. Liu Z, Qiu D, Wang F, Taylor JA, Zhang M. Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism. Mater Charact 2015;106:1-10. https://doi.org/10.1016/j.matchar.2015.05.011

18. Austyn JM. Dendritic cells in the immune system-history, lineages, tissues, tolerance, and immunity. In: Myeloid Cells in Health and Disease. Hoboken: John Wiley and Sons, Ltd.; 2017. p. 155- 207. Available from: https://onlinelibrary.wiley.com/doi/abs [Last accessed on 2023 Aug 19]. https://doi.org/10.1128/9781555819194.ch10

19. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends Immunol 2002;23:445-9. https://doi.org/10.1016/S1471-4906(02)02281-0

20. Delaloye J, Roger T, Steiner-Tardivel QG, Le Roy D, Knaup Reymond M, Akira S, et al. Innate immune sensing of modified Vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog 2009;5:e1000480. https://doi.org/10.1371/journal.ppat.1000480

21. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011;12:509-17. https://doi.org/10.1038/ni.2039

22. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52. https://doi.org/10.1038/32588

23. Janeway CA Jr., Travers P, Walport M, Shlomchik MJ. Immunobiology. 5th ed. New York: Garland Science; 2001.

24. Zhang N, Bevan MJ. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011;35:161-8. https://doi.org/10.1016/j.immuni.2011.07.010

25. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol 2013;31:443-73. https://doi.org/10.1146/annurev-immunol-032712-095910

26. Fehres CM, Unger WW, Garcia-Vallejo JJ, van Kooyk Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol 2014;5:149. https://doi.org/10.3389/fimmu.2014.00149

27. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010;28:445-89. https://doi.org/10.1146/annurev-immunol-030409-101212

28. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4?T cells: Differentiation and functions. Clin Dev Immunol 2012;2012:925135. https://doi.org/10.1155/2012/925135

29. Harwood NE, Batista FD. Early events in B cell activation. Annu Rev Immunol 2010;28:185-210. https://doi.org/10.1146/annurev-immunol-030409-101216

30. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol 2015;15:160-71. https://doi.org/10.1038/nri3795

31. MuŽíková G, Laga R. Macromolecular systems for vaccine delivery. Physiol Res 2016;65:S203-16. https://doi.org/10.33549/physiolres.933422

32. Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, et al. Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunother 2009;32:118-28. https://doi.org/10.1097/CJI.0b013e31818f13c4

33. Azad N, Rojanasakul Y. Vaccine delivery--current trends and future. Curr Drug Deliv 2006;3:137-46. https://doi.org/10.2174/156720106776359249

34. Johansen P, Kündig TM. Parenteral vaccine administration: Tried and true. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit Vaccine Delivery. Advances in Delivery Science and Technology. New York: Springer; 2015. p. 261-86. Available from: https://www.zora.uzh.ch/id/eprint/113028/ [Last accessed on 2023 Aug 19]. https://doi.org/10.1007/978-1-4939-1417-3_14

35. Herzog C. Influence of parenteral administration routes and additional factors on vaccine safety and immunogenicity: A review of recent literature. Expert Rev Vaccines 2014;13:399-415. https://doi.org/10.1586/14760584.2014.883285

36. Lambert PH, Laurent PE. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine 2008;26:3197-208. https://doi.org/10.1016/j.vaccine.2008.03.095

37. Hunter P, Fryhofer SA, Szilagyi PG. Vaccination of adults in general medical practice. Mayo Clin Proc 2020;95:169-83. https://doi.org/10.1016/j.mayocp.2019.02.024

38. Lemoine C, Thakur A, Krajišnik D, Guyon R, Longet S, Razim A, et al. Technological approaches for improving vaccination compliance and coverage. Vaccines (Basel) 2020;8:304. https://doi.org/10.3390/vaccines8020304

39. Bacon A, Makin J, Sizer PJ, Jabbal-Gill I, Hinchcliffe M, Illum L, et al. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun 2000;68:5764-70. https://doi.org/10.1128/IAI.68.10.5764-5770.2000

40. Nevagi RJ, Skwarczynski M, Toth I. Polymers for subunit vaccine delivery. Eur Polym J 2019;114:397-410. https://doi.org/10.1016/j.eurpolymj.2019.03.009

41. Sarmento B, das Neves J. Chitosan-based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics. Hoboken: John Wiley and Sons; 2012. p. 691. https://doi.org/10.1002/9781119962977

42. Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, et al. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010;8:1962-87. https://doi.org/10.3390/md8071962

43. Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 2007;25:2085-94. https://doi.org/10.1016/j.vaccine.2006.11.034

44. Li X, Min M, Du N, Gu Y, Hode T, Naylor M, et al. Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine. Clin Dev Immunol 2013;2013:e387023. https://doi.org/10.1155/2013/387023

45. Marasini N, Skwarczynski M, Toth I. Intranasal delivery of nanoparticle-based vaccines. Ther Deliv 2017;8:151-67. https://doi.org/10.4155/tde-2016-0068

46. Jain S, Khomane K, Jain AK, Dani P. Nanocarriers for transmucosal vaccine delivery. Curr Nanosci 2011;7:160-77. https://doi.org/10.2174/157341311794653541

47. Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010;28:7690-8. https://doi.org/10.1016/j.vaccine.2010.09.019

48. Otterlei M, Ostgaard K, Skjåk-Braek G, Smidsrød O, Soon-Shiong P, Espevik T. Induction of cytokine production from human monocytes stimulated with alginate. J Immunother (1991) 1991;10:286-91. https://doi.org/10.1097/00002371-199108000-00007

49. Farjaha A, Owlia P, Siadat SD, Mousavi SF, Shafieeardestani M. Conjugation of alginate to a synthetic peptide containing T-and B-cell epitopes as an induction for protective immunity against Pseudomonas aeruginosa. J Biotechnol 2014;192:240-7. https://doi.org/10.1016/j.jbiotec.2014.10.025

50. Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 2007;29:17-25. https://doi.org/10.1007/s10529-006-9219-z

51. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): A review. Vet Med 2008;53:397-411. https://doi.org/10.17221/1930-VETMED

52. Kong WH, Sung DK, Kim H, Yang JA, Ieronimakis N, Kim KS, et al. Self-adjuvanted hyaluronate--antigenic peptide conjugate for transdermal treatment of muscular dystrophy. Biomaterials 2016;81:93-103. https://doi.org/10.1016/j.biomaterials.2015.12.007

53. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002;195:99-111. https://doi.org/10.1084/jem.20001858

54. Gariboldi S, Palazzo M, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, et al. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol 2008;181:2103-10. https://doi.org/10.4049/jimmunol.181.3.2103

55. Lees A, Finkelman F, Inman JK, Witherspoon K, Johnson P, Kennedy J, et al. Enhanced immunogenicity of protein-dextran conjugates: I. Rapid stimulation of enhanced antibody responses to poorly immunogenic molecules. Vaccine 1994;12:1160-6. https://doi.org/10.1016/0264-410X(94)90237-2

56. Shinchi H, Crain B, Yao S, Chan M, Zhang SS, Ahmadiiveli A, et al. Enhancement of the immunostimulatory activity of a TLR7 ligand by conjugation to polysaccharides. Bioconjug Chem 2015;26:1713-23. https://doi.org/10.1021/acs.bioconjchem.5b00285

57. Zhang W, An M, Xi J, Liu H. Targeting CpG adjuvant to lymph node via dextran conjugate enhances antitumor immunotherapy. Bioconjug Chem 2017;28:1993-2000. https://doi.org/10.1021/acs.bioconjchem.7b00313

58. Luo M, Shao B, Nie W, Wei XW, Li YL, Wang BL, et al. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Sci Rep 2015;5:11062. https://doi.org/10.1038/srep11062

59. Zhang YQ, Tsai YC, Monie A, Hung CF, Wu TC. Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine 2010;28:5212-9. https://doi.org/10.1016/j.vaccine.2010.05.068

60. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int J Pharm 2004;278:1-23. https://doi.org/10.1016/j.ijpharm.2004.01.044

61. Jameela SR, Suma N, Misra A, Raghuvanshi R, Ganga S, Jayakrishnan A. Poly(ε-caprolactone) microspheres as a vaccine carrier. Curr Sci 1996;70:669-71.

62. Slobbe L, Medlicott N, Lockhart E, Davies N, Tucker I, Razzak M, et al. A prolonged immune response to antigen delivered in poly (epsilon-caprolactone) microparticles. Immunol Cell Biol 2003;81:185-91. https://doi.org/10.1046/j.1440-1711.2003.01155.x

63. Cruz LJ, Tacken PJ, Eich C, Rueda F, Torensma R, Figdor CG. Controlled release of antigen and toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine (Lond) 2017;12:491-510. https://doi.org/10.2217/nnm-2016-0295

64. Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011;63:943-55. https://doi.org/10.1016/j.addr.2011.05.021

65. Bailey BA, Desai KH, Ochyl LJ, Ciotti SM, Moon JJ, Schwendeman SP. Self-encapsulating poly(lactic-co-glycolic acid) (PLGA) microspheres for intranasal vaccine delivery. Mol Pharm 2017;14:3228-37. https://doi.org/10.1021/acs.molpharmaceut.7b00586

66. Inbaraj BS, Chen BH. In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. Int J Nanomedicine 2012;7:4419-32. https://doi.org/10.2147/IJN.S34396

67. Matsusaki M, Hiwatari Ken-Ichiro, Higashi M, Kaneko T, Akashi M. Stably-dispersed and surface-functional bionanoparticles prepared by self-assembling amphipathic polymers of hydrophilic poly(γ-glutamic acid) bearing hydrophobic amino acids. Chem Lett 2004;33:398-9. https://doi.org/10.1246/cl.2004.398

68. Uto T, Wang X, Sato K, Haraguchi M, Akagi T, Akashi M, et al. Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J Immunol 2007;178:2979-86. https://doi.org/10.4049/jimmunol.178.5.2979

69. Akagi T, Wang X, Uto T, Baba M, Akashi M. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 2007;28:3427-36. https://doi.org/10.1016/j.biomaterials.2007.04.023

70. Bettencourt A, Almeida AJ. Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 2012;29:353-67. https://doi.org/10.3109/02652048.2011.651500

71. Kreuter J, Speiser PP. New adjuvants on a polymethylmethacrylate base. Infect Immun 1976;13:204-10. https://doi.org/10.1128/iai.13.1.204-210.1976

72. Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J Control Release 1990;11:205-14. https://doi.org/10.1016/0168-3659(90)90133-E

73. Voltan R, Castaldello A, Brocca-Cofano E, Altavilla G, Caputo A, Laus M, et al. Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharm Res 2007;24:1870-82. https://doi.org/10.1007/s11095-007-9310-8

74. Bolhassani A. Lipid-based delivery systems in development of genetic and subunit vaccines. Mol Biotechnol 2023;65:669-98. https://doi.org/10.1007/s12033-022-00624-8

75. Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical design of viral vaccines based on avant-garde nanocarriers: A multi-domain narrative review. Biomedicines 2021;9:520. https://doi.org/10.3390/biomedicines9050520

76. Okay S, Özcan ÖÖ, Karahan M, Okay S, Özcan ÖÖ, Karahan M. Nanoparticle-based delivery platforms for mRNA vaccine development. AIMS Biophys 2020;7:323-38. https://doi.org/10.3934/biophy.2020023

77. Tretiakova DS, Vodovozova EL. Liposomes as adjuvants and vaccine delivery systems. Biochem (Mosc) Suppl Ser A Membr Cell Biol 2022;16:1-20. https://doi.org/10.1134/S1990747822020076

78. Luwi NE, Ahmad S, Azlyna AS, Nordin A, Sarmiento ME, Acosta A, et al. Liposomes as immunological adjuvants and delivery systems in the development of tuberculosis vaccine: A review. Asian Pac J Trop Med 2022;15:7. https://doi.org/10.4103/1995-7645.332806

79. Fobian SF, Cheng Z, Ten Hagen TL. Smart lipid-based nanosystems for therapeutic immune induction against cancers: Perspectives and outlooks. Pharmaceutics 2021;14:26. https://doi.org/10.3390/pharmaceutics14010026

80. De Serrano LO, Burkhart DJ. Liposomal vaccine formulations as prophylactic agents: Design considerations for modern vaccines. J Nanobiotechnology 2017;15:83. https://doi.org/10.1186/s12951-017-0319-9

81. Khademi F, Taheri RA, Momtazi-Borojeni AA, Farnoosh G, Johnston TP, Sahebkar A. Potential of cationic liposomes as adjuvants/delivery systems for tuberculosis subunit vaccines. Rev Physiol Biochem Pharmacol 2018;175:47-69. https://doi.org/10.1007/112_2018_9

82. Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, et al. Nanotechnologies in delivery of DNA and mRNA vaccines to the nasal and pulmonary mucosa. Nanomaterials (Basel) 2022;12:226. https://doi.org/10.3390/nano12020226

83. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006;12:4669-84. https://doi.org/10.2174/138161206779026245

84. Pavot V, Rochereau N, Primard C, Genin C, Perouzel E, Lioux T, et al. Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Control Release 2013;167:60-7. https://doi.org/10.1016/j.jconrel.2013.01.015

85. Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, et al. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm Res 2015;32:311-20. https://doi.org/10.1007/s11095-014-1465-5

86. Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release 2009;136:161-9. https://doi.org/10.1016/j.jconrel.2009.02.010

87. Jain AK, Goyal AK, Mishra N, Vaidya B, Mangal S, Vyas SP. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm 2010;387:253-62. https://doi.org/10.1016/j.ijpharm.2009.12.013

88. Luo Z, Li P, Deng J, Gao N, Zhang Y, Pan H, et al. Cationic polypeptide micelle-based antigen delivery system: A simple and robust adjuvant to improve vaccine efficacy. J Control Release 2013;170:259-67. https://doi.org/10.1016/j.jconrel.2013.05.027

89. Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, et al. Nanovaccine loaded with poly I: C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 2015;38:50-60. https://doi.org/10.1016/j.biomaterials.2014.10.050

90. Noh YW, Hong JH, Shim SM, Park HS, Bae HH, Ryu EK, et al. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew Chem Int Ed Engl 2013;52:7684-9. https://doi.org/10.1002/anie.201302881

91. Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release 2014;191:24-33. https://doi.org/10.1016/j.jconrel.2014.03.041

92. Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee CC, Opara C, et al. pH-responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 2013;7:3912-25. https://doi.org/10.1021/nn305466z

93. Boudier A, Aubert-Pouëssel A, Louis-Plence P, Gérardin C, Jorgensen C, Devoisselle JM, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials 2009;30:233-41. https://doi.org/10.1016/j.biomaterials.2008.09.033

94. Boudier A, Aubert-Pouëssel A, Mebarek N, Chavanieu A, Quentin J, Martire D, et al. Development of tripartite polyion micelles for efficient peptide delivery into dendritic cells without altering their plasticity. J Control Release 2011;154:156-63. https://doi.org/10.1016/j.jconrel.2011.05.016

95. Fu Y, Li J. A novel delivery platform based on bacteriophage MS2 virus-like particles. Virus Res 2016;211:9-16. https://doi.org/10.1016/j.virusres.2015.08.022

96. Peachman KK, Li Q, Matyas GR, Shivachandra SB, Lovchik J, Lyons RC, et al. Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. Clin Vaccine Immunol 2012;19:11-6. https://doi.org/10.1128/CVI.05376-11

97. Tao P, Mahalingam M, Rao VB. Highly effective soluble and bacteriophage T4 nanoparticle plague vaccines against Yersinia pestis. Methods Mol Biol 2016;1403:499-518. https://doi.org/10.1007/978-1-4939-3387-7_28

98. Sathaliyawala T, Rao M, Maclean DM, Birx DL, Alving CR, Rao VB. Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: A novel in vitro approach to construct multicomponent HIV vaccines. J Virol 2006;80:7688-98. https://doi.org/10.1128/JVI.00235-06

99. Ren ZJ, Tian CJ, Zhu QS, Zhao MY, Xin AG, Nie WX, et al. Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice. Vaccine 2008;26:1471-81. https://doi.org/10.1016/j.vaccine.2007.12.053

100. Orosco FL. Current progress in diagnostics, therapeutics, and vaccines for African swine fever virus. Vet Integr Sci 2023; 21:751-81. https://doi.org/10.12982/VIS.2023.054

101. Wu J, Tu C, Yu X, Zhang M, Zhang N, Zhao M, et al. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: A powerful immunological approach. J Virol Methods 2007;139:50-60. https://doi.org/10.1016/j.jviromet.2006.09.017

102. Cao YC, Shi QC, Ma JY, Xie QM, Bi YZ. Vaccination against very virulent infectious bursal disease virus using recombinant T4 bacteriophage displaying viral protein VP2. Acta Biochim Biophys Sin (Shanghai) 2005;37:657-64. https://doi.org/10.1111/j.1745-7270.2005.00101.x

103. Shivachandra SB, Rao M, Janosi L, Sathaliyawala T, Matyas GR, Alving CR, et al. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins. Virology 2006;345:190-8. https://doi.org/10.1016/j.virol.2005.10.037

104. Li Q, Shivachandra SB, Zhang Z, Rao VB. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: A novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J Mol Biol 2007;370:1006-19. https://doi.org/10.1016/j.jmb.2007.05.008

105. Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, et al. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog 2013;9:e1003495. https://doi.org/10.1371/journal.ppat.1003495

106. Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017;114:116-31. https://doi.org/10.1016/j.addr.2017.04.008

107. Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: Non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015;6:755. https://doi.org/10.3389/fmicb.2015.00755

108. Deng L, Roose K, Job ER, De Rycke R, Van Hamme E, Gonçalves A, et al. Oral delivery of Escherichia coli persistently infected with virus. J Control Release 2017;264:55-65. https://doi.org/10.1016/j.jconrel.2017.08.020

109. Orosco FL. Immune evasion mechanisms of porcine epidemic diarrhea virus: A comprehensive review. Vet Integr Sci 2024;22:171-92. https://doi.org/10.12982/VIS.2024.014

110. Prisco A, De Berardinis P. Filamentous bacteriophage fd as an antigen delivery system in vaccination. Int J Mol Sci 2012;13:5179-94. https://doi.org/10.3390/ijms13045179

111. Samoylova TI, Braden TD, Spencer JA, Bartol FF. Immunocontraception: Filamentous bacteriophage as a platform for vaccine development. Curr Med Chem 2017;24:3907-20. https://doi.org/10.2174/0929867324666170911160426

112. Nicastro J, Sheldon K, Slavcev RA. Bacteriophage lambda display systems: Developments and applications. Appl Microbiol Biotechnol 2014;98:2853-66. https://doi.org/10.1007/s00253-014-5521-1

113. Hernando-Pérez M, Lambert S, Nakatani-Webster E, Catalano CE, de Pablo PJ. Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 2014;5:4520. https://doi.org/10.1038/ncomms5520

114. Sternberg N, Hoess RH. Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci U S A 1995;92:1609-13. https://doi.org/10.1073/pnas.92.5.1609

115. Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1517. https://doi.org/10.1002/wnan.1517

116. Chang JR, Song EH, Nakatani-Webster E, Monkkonen L, Ratner DM, Catalano CE. Phage lambda capsids as tunable display nanoparticles. Biomacromolecules 2014;15:4410-9. https://doi.org/10.1021/bm5011646

117. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE. Bacteriophage lambda stabilization by auxiliary protein gpD: Timing, location, and mechanism of attachment determined by cryo-EM. Structure 2008;16:1399-406. https://doi.org/10.1016/j.str.2008.05.016

118. González-Cano P, Gamage LN, Marciniuk K, Hayes C, Napper S, Hayes S, et al. Lambda display phage as a mucosal vaccine delivery vehicle for peptide antigens. Vaccine 2017;35:7256-63. https://doi.org/10.1016/j.vaccine.2017.11.010

119. Gamage LN, Ellis J, Hayes S. Immunogenicity of bacteriophage lambda particles displaying porcine circovirus 2 (PCV2) capsid protein epitopes. Vaccine 2009;27:6595-604. https://doi.org/10.1016/j.vaccine.2009.08.019

120. Guo F, Liu Z, Fang PA, Zhang Q, Wright ET, Wu W, et al. Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proc Natl Acad Sci U S A 2014;111:E4606-14. https://doi.org/10.1073/pnas.1407020111

121. Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung'u T, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 2015;348:aaa0698. https://doi.org/10.1126/science.aaa0698

122. Tan GH, Yusoff K, Seow HF, Tan WS. Antigenicity and immunogenicity of the immunodominant region of hepatitis B surface antigen displayed on bacteriophage T7. J Med Virol 2005;77:475-80. https://doi.org/10.1002/jmv.20479

123. Xu H, Bao X, Lu Y, Liu Y, Deng B, Wang Y, et al. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV). Vet Microbiol 2017;205:46-52. https://doi.org/10.1016/j.vetmic.2017.04.023

124. Hashemi H, Pouyanfard S, Bandehpour M, Noroozbabaei Z, Kazemi B, Saelens X, et al. Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge. PLoS One 2012;7:e45765. https://doi.org/10.1371/journal.pone.0045765

125. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 2008;380:252-63. https://doi.org/10.1016/j.jmb.2008.04.049

126. Tumban E, Peabody J, Tyler M, Peabody DS, Chackerian B. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus. PLoS One 2012;7:e49751. https://doi.org/10.1371/journal.pone.0049751

127. Basu R, Zhai L, Contreras A, Tumban E. Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine 2018;36:1256-64. https://doi.org/10.1016/j.vaccine.2018.01.056

128. Heal KG, Hill HR, Stockley PG, Hollingdale MR, Taylor-Robinson AW. Expression and immunogenicity of a liver stage malaria epitope presented as a foreign peptide on the surface of RNA-free MS2 bacteriophage capsids. Vaccine 1999;18:251-8. https://doi.org/10.1016/S0264-410X(99)00209-1

129. Dong YM, Zhang GG, Huang XJ, Chen L, Chen HT. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease. Antiviral Res 2015;117:39-43. https://doi.org/10.1016/j.antiviral.2015.01.005

130. Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, et al. The true story and advantages of RNA phage capsids as nanotools. Intervirology 2016;59:74-110. https://doi.org/10.1159/000449503

131. Rumnieks J, Tars K. Crystal structure of the maturation protein from bacteriophage Qβ. J Mol Biol 2017;429:688-96. https://doi.org/10.1016/j.jmb.2017.01.012

132. Brown SD, Fiedler JD, Finn MG. Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry 2009;48:11155-7. https://doi.org/10.1021/bi901306p

133. Vasiljeva I, Kozlovska T, Cielens I, Strelnikova A, Kazaks A, Ose V, et al. Mosaic Qbeta coats as a new presentation model. FEBS Lett 1998;431:7-11. https://doi.org/10.1016/S0014-5793(98)00716-9

134. Kündig TM, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM, Fulurija A, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 2006;117:1470-6. https://doi.org/10.1016/j.jaci.2006.01.040

135. Bessa J, Schmitz N, Hinton HJ, Schwarz K, Jegerlehner A, Bachmann MF. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: Implications for vaccine design. Eur J Immunol 2008;38:114-26. https://doi.org/10.1002/eji.200636959

136. Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017;2:3. https://doi.org/10.1038/s41541-017-0006-8

137. Roth GA, Gale EC, Alcántara-Hernández M, Luo W, Axpe E, Verma R, et al. Injectable hydrogels for sustained codelivery of subunit vaccines enhance humoral immunity. ACS Cent Sci 2020;6:1800-12. https://doi.org/10.1021/acscentsci.0c00732

138. Li X, Galliher-Beckley A, Huang H, Sun X, Shi J. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus. Vaccine 2013;31:4508-15. https://doi.org/10.1016/j.vaccine.2013.07.080

139. Friedrich BM, Beasley DW, Rudra JS. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus. Vaccine 2016;34:5479-82. https://doi.org/10.1016/j.vaccine.2016.09.044

140. Wang Y, Zhang J, Wang Y, Wang K, Wei H, Shen L. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon 2018;155:9-20. https://doi.org/10.1016/j.toxicon.2018.09.005

141. Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, et al. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018;25:278-92. https://doi.org/10.1080/10717544.2018.1425776

142. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 2016;39:1181-92. https://doi.org/10.1007/s12272-016-0782-0

143. Wu Q, Gong C, Shi S, Wang Y, Huang M, Yang L, et al. Mannan loaded biodegradable and injectable thermosensitive PCL-PEG-PCL hydrogel for vaccine delivery. Soft Mater 2012;10:472-86. https://doi.org/10.1080/1539445X.2010.537422

144. Bobbala S, Tamboli V, McDowell A, Mitra AK, Hook S. Novel injectable pentablock copolymer based thermoresponsive hydrogels for sustained release vaccines. AAPS J 2016;18:261-9. https://doi.org/10.1208/s12248-015-9843-4

145. Song H, Huang P, Niu J, Shi G, Zhang C, Kong D, et al. Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 2018;159:119-29. https://doi.org/10.1016/j.biomaterials.2018.01.004

146. Sun Z, Liang J, Dong X, Wang C, Kong D, Lv F. Injectable hydrogels coencapsulating granulocyte-macrophage colony-stimulating factor and ovalbumin nanoparticles to enhance antigen uptake efficiency. ACS Appl Mater Interfaces 2018;10:20315-25. https://doi.org/10.1021/acsami.8b04312

147. Song H, Yang P, Huang P, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 2019;9:2299-314. https://doi.org/10.7150/thno.30577

148. Asai D, Fukuda T, Morokuma K, Funamoto D, Yamaguchi Y, Mori T, et al. Injectable polypeptide hydrogel depot system for assessment of the immune response-inducing efficacy of sustained antigen release alone. Macromol Biosci 2019;19:e1900167. https://doi.org/10.1002/mabi.201900167

149. Zhang L, Yang W, Hu C, Wang Q, Wu Y. Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. Int J Nanomedicine 2018;13:2973-87. https://doi.org/10.2147/IJN.S154743

150. Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, et al. Nanoparticle-based delivery systems for vaccines. Vaccines (Basel) 2022;10:1946. https://doi.org/10.3390/vaccines10111946

151. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7:3926-38. https://doi.org/10.1021/nn3057005

152. Stone JW, Thornburg NJ, Blum DL, Kuhn SJ, Wright DW, Crowe JE Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology 2013;24:295102. https://doi.org/10.1088/0957-4484/24/29/295102

153. Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014;9:237-51. https://doi.org/10.2217/nnm.13.58

154. Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010;21:195101. https://doi.org/10.1088/0957-4484/21/19/195101

155. Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci 2011;44:653-9. https://doi.org/10.1016/j.ejps.2011.10.012

156. Ingle SG, Pai RV, Monpara JD, Vavia PR. Liposils: An effective strategy for stabilizing paclitaxel loaded liposomes by surface coating with silica. Eur J Pharm Sci 2018;122:51-63. https://doi.org/10.1016/j.ejps.2018.06.025

157. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011;121:2768-80. https://doi.org/10.1172/JCI45600

158. Niut Y, Popatt A, Yu M, Karmakar S, Gu W, Yu C. Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv 2012;3:1217-37. https://doi.org/10.4155/tde.12.98

159. He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T, Bell SJ. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 2000;7:899-903. https://doi.org/10.1128/CDLI.7.6.899-903.2000

160. Joyappa DH, Kumar CA, Banumathi N, Reddy GR, Suryanarayana VV. Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet Microbiol 2009;139:58-66. https://doi.org/10.1016/j.vetmic.2009.05.004

161. Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, et al. Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 2012;12:2003-12. https://doi.org/10.1021/nl300027p

162. Wang C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine 2018;14:1349-60. https://doi.org/10.1016/j.nano.2018.03.007

163. Dantas GP, Ferraz FS, Andrade LM, Costa GM. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem Biol Interact 2022;363:110023. https://doi.org/10.1016/j.cbi.2022.110023

164. Chavda VP, Shah D. Self-emulsifying delivery systems: One step ahead in improving solubility of poorly soluble drugs. In: Ficai A, Grumezescu AM, editors. Nanostructures for Cancer Therapy. Micro and Nano Technologies. Ch. 25. Amsterdam: Elsevier; 2017. p. 653- 718. Available from: https://www.sciencedirect.com/science/article/ pii [Last accessed on 2023 Aug 19]. https://doi.org/10.1016/B978-0-323-46144-3.00025-8

165. O'Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 2007;6:699-710. https://doi.org/10.1586/14760584.6.5.699

166. Nasiri MI, Vora LK, Ershaid JA, Peng K, Tekko IA, Donnelly RF. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. Drug Deliv Transl Res 2022;12:881-96. https://doi.org/10.1007/s13346-021-01107-0

167. Lee JJ, Shim A, Lee SY, Kwon BE, Kim SR, Ko HJ, et al. Ready-to-use colloidal adjuvant systems for intranasal immunization. J Colloid Interface Sci 2016;467:121-8. https://doi.org/10.1016/j.jcis.2016.01.006

168. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008;3:145-50. https://doi.org/10.1038/nnano.2008.30

169. Lamaisakul S, Tantituvanont A, Lipipun V, Ritthidej G. Development of novel cationic microemulsion as parenteral adjuvant for influenza vaccine. Asian J Pharm Sci 2020;15:591-604. https://doi.org/10.1016/j.ajps.2019.08.002

170. Yang AQ, Yang HY, Guo SJ, Xie YE. MF59 adjuvant enhances the immunogenicity and protective immunity of the OmpK/Omp22 fusion protein from Acineterbacter baumannii through intratracheal inoculation in mice. Scand J Immunol 2019;90:e12769. https://doi.org/10.1111/sji.12769

Article Metrics
56 Views 17 Downloads 73 Total

Year

Month

Related Search

By author names