Review Article | Volume 11, Supplement 1, December, 2023

Role of DREB genes in the regulation of salt stress-mediated defense responses in plants

Ashokkumar Ramakrishnan Yadav Vaishnavi Ashokkumar Suganthi Muthusamy Senthilkumar Palanisamy   

Open Access   

Published:  Dec 15, 2023

DOI: 10.7324/JABB.2023.144143
Abstract

Abiotic stress plays a major role in plant growth and its development, multiple stress elements such as drought, cold, elevated temperature, and heavy metal contamination may influence them. However, salinity is still a universal abiotic stressor that stunts plant development worldwide. During such adverse conditions, certain stress-resistant genes are upregulated, wherein dehydration responsive element binding (DREB) genes are one such class of apetala 2/ethylene responsive element binding protein which binds to dehydration responsive element (DRE)/C-repeat that can be activated by the action of abscisic acid-dependent or independent pathway. DREB genes influence the stress tolerance of various plants, the cis-element DRE present adjacent to the foremost promoter area of stress-receptive genes is where the DREB transcription factors fix osmotic stress in plants, and their subclasses DREB1 and DREB 2 are also involved in cold and dehydration stress, respectively. As per Central Soil Salinity Research Institute, salinity affects nearly 67,44,968 ha of land in India. This review focuses on salinity stress, its influence on the activation of the DREB genes, and its effect on eliciting structural and functional changes in plant development and transgenic research.


Keyword:     Dehydration responsive element binding Salinity stress Dehydration responsive element binding genes C repeat binding factor Apetala 2/ethylene-responsive element binding protein) Cis-regulatory element Dehydration responsive element Abscisic acid Abscisic acid responsive element


Citation:

Yadav AR, Ashokkumar V, Muthusamy S, Palanisamy S. Role of DREB genes in the regulation of salt stress-mediated defense responses in plants. J App Biol Biotech. 2023;11(Suppl 1):1-9. http://doi.org/10.7324/JABB.2023.144143

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Abdelaal S, Moussa KF, Ibrahim AH, Mohamed ES, Kucher DE, Savin I, et al. Mapping spatial management zones of salt-affected soils in arid region: A case study in the East of the Nile Delta, Egypt. Agronomy 2021;11:2510. https://doi.org/10.3390/agronomy11122510

2. Mandal AK, Reddy GO, Ravisankar T. Digital database of salt-affected soils in India using Geographic Information System. J Soil Salinity Water Qual 2011;3:16-29.

3. Munns R, Termaat A. Whole-plant responses to salinity Australian. J Plant Physiol 1986;13:143-60. https://doi.org/10.1071/PP9860143

4. Avsian-Kretchmer O, Gueta-Dahan Y, Lev-Yadun S, Gollop R, Ben- Hayyim G. The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol 2004;135:1685-96. https://doi.org/10.1104/pp.104.041921

5. Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 2006;25:1263-74. https://doi.org/10.1007/s00299-006-0204-8

6. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi- Shinozaki K, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998;10:1391-406. https://doi.org/10.1105/tpc.10.8.1391

7. Zhou ML, Ma JT, Pang JF, Zhang ZL, Tang YX, Wu YM. Regulation

of plant stress response by dehydration responsive element binding (DREB) transcription factors. Afr J Biotechnol 2010;9:9255-69.

8. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 2011;62:4731-48. https://doi.org/10.1093/jxb/err210

9. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 1996;47:377-403. https://doi.org/10.1146/annurev.arplant.47.1.377

10. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 1997;9:1859-68. https://doi.org/10.1105/tpc.9.10.1859

11. Busk PK, Pagès M. Regulation of abscisic acid-induced transcription. Plant Mol Biol 1998;37:425-35. https://doi.org/10.1023/A:1006058700720

12. Saibo NJ, Lourenço T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 2009;103:609-23. https://doi.org/10.1093/aob/mcn227

13. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol 1997;115:327-34. https://doi.org/10.1104/pp.115.2.327

14. Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation (Camb) 2020;1:100017. https://doi.org/10.1016/j.xinn.2020.100017

15. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003;218:1-14. https://doi.org/10.1007/s00425-003-1105-5

16. Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol General Genet 1993;238:17-25. https://doi.org/10.1007/BF00279525

17. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 2007;8:206-16. https://doi.org/10.1038/nrg2063

18. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 2003;33:751-63. https://doi.org/10.1046/j.1365-313X.2003.01661.x

19. Saleh A, Lumreras V, Pages M, Tuberosa R, Phillips RL, Gale M. Functional Role of DRE-binding Transcription Factors in Abiotic Stress. In: Proceedings of the International Congress 'in the Wake of the Double Helix from the Green Revolution to the Gene Revolution, Bologna, Italy; 2005. p. 27-31.

20. Warsi MK, Howladar SM, Alsharif MA. Regulon: An overview of plant abiotic stress transcriptional regulatory system and role in transgenic plants. Braz J Biol 2021;83:e245379. https://doi.org/10.1590/1519-6984.245379

21. Singh K, Chandra A. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia 2021;76:3043-55. https://doi.org/10.1007/s11756-021-00840-8

22. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 2000;12:771-86. https://doi.org/10.1105/tpc.12.5.771

23. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998;280:104-6. https://doi.org/10.1126/science.280.5360.104

24. Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 2008;53:264-74. https://doi.org/10.1111/j.1365-313X.2007.03334.x

25. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 2000;124:1854-65. https://doi.org/10.1104/pp.124.4.1854

26. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 1997;94:1035-40. https://doi.org/10.1073/pnas.94.3.1035

27. Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Biol Chem 1998;379:633-46.

28. Li X, Gao B, Zhang D, Liang Y, Liu X, Zhao J, et al. Identification, classification, and functional analysis of AP2/ERF family genes in the desert moss Bryum argenteum. Int J Mol Sci 2018;19:3637. https://doi.org/10.3390/ijms19113637

29. Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis) Funct Integr Genomics 2015;15:741-52. https://doi.org/10.1007/s10142-015-0457-9

30. Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp Pekinensis). BMC Genomics 2013;14:573. https://doi.org/10.1186/1471-2164-14-573

31. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 2002;290:998-1009. https://doi.org/10.1006/bbrc.2001.6299

32. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 1997;94:7076-81. https://doi.org/10.1073/pnas.94.13.7076

33. Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 1998;17:5484-96. https://doi.org/10.1093/emboj/17.18.5484

34. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 2007;50:54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x

35. Yang T, Zhang L, Zhang T, Zhang H, Xu S, An L. Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci 2005;169:987-95. https://doi.org/10.1016/j.plantsci.2005.07.005

36. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, et al. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 2003;17:1043-54. https://doi.org/10.1101/gad.1077503

37. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 2007;19:1403-14. https://doi.org/10.1105/tpc.106.048397

38. Novillo F, Alonso JM, Ecker JR, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 2004;101:3985-90. https://doi.org/10.1073/pnas.0303029101

39. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 2006;18:1292-309. https://doi.org/10.1105/tpc.105.035881

40. Salmero?n A, Janzen J, Soneji Y, Bump N, Kamens J, Allen H, et al. Direct phosphorylation of NF-κB1 p105 by the IκB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J Biol Chem 2001;276:22215-22. https://doi.org/10.1074/jbc.M101754200

41. Rohila JS, Jain RK, Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 2002;163:525-32. https://doi.org/10.1016/S0168-9452(02)00155-3

42. Babu RC, Zhang J, Blum A, Ho TH, Wu R, Nguyen HT. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 2004;166:855-62. https://doi.org/10.1016/j.plantsci.2003.11.023

43. Hao X, Chen M, Xu H, Gao S, Chen X, Li L, et al. Obtaining of transgenic wheats with GH-DREB gene and their physiological index analysis on drought tolerance. Southwest China J Agric Sci 2005;18:616-20.

44. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 2006;47:141-53. https://doi.org/10.1093/pcp/pci230

45. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 2008;67:589-602. https://doi.org/10.1007/s11103-008-9340-6

46. Nguyen QH, Vu LT, Nguyen LT. Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep 2019;9:19663. https://doi.org/10.1038/s41598-019-55895-0

47. Wang HL, Tao JJ, He LG, Zhao YJ, Xu M, Liu DC, et al. cDNA cloning and expression analysis of a Poncirus trifoliata CBFgene. Biol Plant 2009;53:625-30. https://doi.org/10.1007/s10535-009-0114-z

48. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 2011;9:230-49. https://doi.org/10.1111/j.1467-7652.2010.00547.x

49. Almoguera C, Prieto-Dapena P, Díaz-Martín J, Espinosa JM, Carranco R, Jordano J. The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol 2009;9:75. https://doi.org/10.1186/1471-2229-9-75

50. Gupta K, Agarwal PK, Reddy MK, Jha B. SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 2010;29:1131-7. https://doi.org/10.1007/s00299-010-0896-7

51. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 2002;130:639-48. https://doi.org/10.1104/pp.006478

52. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 2000;42:657-65. https://doi.org/10.1023/A:1006321900483

53. Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, et al. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 2010;153:716-27. https://doi.org/10.1104/pp.110.154617

54. Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D. Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from Chrysanthemum (Dendranthema vestitum). J Plant Res 2008;121:215-26. https://doi.org/10.1007/s10265-007-0140-x

55. Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, et al. GmDREB2A;2, a canonical dehydration-responsive element-binding protein2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 2013;161:346-61. https://doi.org/10.1104/pp.112.204875

56. Nordin K, Heino P, Palva ET. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 1991;16:1061-71. https://doi.org/10.1007/BF00016077

57. Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 1992;19:689-92. https://doi.org/10.1007/BF00026794

58. Nordin K, Vahala T, Palva ET. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 1993;21:641-53. https://doi.org/10.1007/BF00014547

59. Singh K, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 2002;5:430-6. https://doi.org/10.1016/S1369-5266(02)00289-3

60. Chen T, Shabala S, Niu Y, Chen Z, Shabala L, Meinke H, et al. Molecular mechanisms of salinity tolerance in rice. Crop J 2021;9:506-520. https://doi.org/10.1016/j.cj.2021.03.005

61. Wang M, Zhuang J, Zou Z, Li Q, Xin H, Li X. Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana. J Plant Biol 2017;60:452-61. https://doi.org/10.1007/s12374-016-0547-9

62. Jiang Q, Hu Z, Zhang H, Ma Y. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. Crop J 2014;2:120-31. https://doi.org/10.1016/j.cj.2014.02.003

63. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 2009;149:88-95. https://doi.org/10.1104/pp.108.129791

64. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 2011;286:321-32. https://doi.org/10.1007/s00438-011-0647-7

65. Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 2011;52:2136-46. https://doi.org/10.1093/pcp/pcr143

66. Liu Q, Zhao N, Yamaguch-Shinozaki K, Shinozaki K. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull 2000;45:970-5. https://doi.org/10.1007/BF02884972

67. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 2001;127:910- 7. https://doi.org/10.1104/pp.010548

68. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 2002;129:1086-94. https://doi.org/10.1104/pp.003442

69. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 1998;16:433-42. https://doi.org/10.1046/j.1365-313x.1998.00310.x

70. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 2010;283:185-96. https://doi.org/10.1007/s00438-009-0506-y

71. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 2006;81:77-91. https://doi.org/10.1266/ggs.81.77

72. Xue GP, Loveridge CW. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 2004;37:326-39. https://doi.org/10.1046/j.1365-313X.2003.01963.x

73. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 2007;277:189-98. https://doi.org/10.1007/s00438-006-0183-z

74. Bihani P, Char B, Bhargava S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 2011;149:95-101. https://doi.org/10.1017/S0021859610000742

75. Hong JP, Kim WT. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta 2005;220:875-88. https://doi.org/10.1007/s00425-004-1412-5

76. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, et al. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 2003b;107:155-61. https://doi.org/10.1007/s00122-003-1226-z

77. Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 2005;110:1355-62. https://doi.org/10.1007/s00122-004-1867-6

78. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 2007;353:299-305. https://doi.org/10.1016/j.bbrc.2006.12.027

79. Yang Y, Wu J, Zhu K, Liu L, Chen F, Yu D. Identification and characterization of two Chrysanthemum (Dendronthema x morifolium) DREB genes, belonging to the AP2/EREBP family. Mol Biol Rep 2009;36:71-81. https://doi.org/10.1007/s11033-007-9153-8

80. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 2008;30:2191-8. https://doi.org/10.1007/s10529-008-9811-5

81. Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 2005;80:185-97. https://doi.org/10.1266/ggs.80.185

82. Shiqing G, Huijan X, Xianguo C, Ming C, Zhaosi X, Liancheng L, et al. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chin Sci Bull 2005;50:2714-23. https://doi.org/10.1007/BF02899641

83. Mei Z, Wei L, Yu-Ping B, Zi-Zhang W. Isolation and identification of PNDREB1, a new DREB transcription factor from peanut (Arachis hypogaea L. Acta Agron Sin 2009;35:1973-80. https://doi.org/10.3724/SP.J.1006.2009.01973

84. Chen J, Xia X, Yin W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 2009;378:483-7. https://doi.org/10.1016/j.bbrc.2008.11.071

85. Roach BT. Origin and Improvement of the Genetic Base of Sugarcane. Vol. 11. In: Proceedings Australian Society of Sugar Cane Technologists; 1989. p. 35-47.

86. Ashraf M, Akram NA. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol Adv 2009;27:744-52. https://doi.org/10.1016/j.biotechadv.2009.05.026

87. Ortiz R, Iwanaga M, Reynolds MP, Wu H, Crouch JH. Over view on crop genetic engineering for drought-pro environments. J Semi Arid Trop Agric Res 2007;4:1-3088.

88. Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, et al. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 2015;34:247-63. https://doi.org/10.1007/s00299-014-1704-6

Article Metrics
120 Views 80 Downloads 200 Total

Year

Month

Related Search

By author names