Reference
1. Vahdati K., Leslie C. Abiotic stress-plant responses and applications in agriculture. InTech. 2013; 1: 418.
2. Ashraf, M., 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27: 84–93.
3. Lewis, D.H. Storage carbohydrates in vascular plants: distribution, physiology and metabolism. (London: Cambridge University Press). 1984.
4. Munns, R., Tester, M. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 2008; 59: 651–81.
5. Ashraf, M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances. 2009; 27: 84–93.
6. Zhu, J.K. Salt and drought signal transduction in plants. Annual Review of Plant Biology. 2002; 53: 247-73.
7. Meloni, D.A., Oliva, M.A., Martinez, C.A., Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany. 2003; 49: 69-76.
8. Neto, A.D.A., Prisco, J.T., En´eas-Filho, J., Abreu, C.E.B., Gomes-Filho, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006; 56: 87-9.
9. Papadimitriou, V., Sotiroudis, T.G., Xenakis, A., Sofikiti, N., Stavyiannoudaki, V., Chaniotakis, N.A. Oxidative stability and radical scavenging activity of extra virgin olive oils: An electron paramagnetic resonance spectroscopy study. Analytica Chimica Acta. 2006; 573: 453-458.
10. Hussain, I., Ashraf, M.A., Anwara, F., Rasheed, R., Niaz, M., Wahid, A. Biochemical characterization of maize (Zea mays L.) for salt tolerance. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 2014; 148: 1016-1026.
11. Ediga, A., Hemalatha, S., Meriga, B. Effect of salinity stress on antioxidant defense system of two finger millet cultivars (Eleusine coracana (L.) Gaertn) differing in their sensitivity. Advances in Biological Research. 2013; 7: 180-187.
12. Racusen, D., Foote, M. Protein synthesis in the dark grown bean leaves. Canadian Journal of Botany. 1965; 817-824.
13. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany. 1981; 126: 93-101.
14. Teranishi, Y., Tanaka, A., Osumi, M., Fukui, S. Catalase activities of hydrocarbon utilizing Candida yeasts. Agricultural and Biological Chemistry. 1974; 38: 1213-1220.
15. Nakano, Y., Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 1981; 22: 867-880.
16. Maclachalan, S., Zalic, S. Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant on barley. Canadian Journal of Botany. 1963; 41: 1053-1062.
17. Gomez, K.A., Gomez, A.A. Statistical procedure for agricultural research (2nd edition), John wiley, NY. 1984; 680.
18. Ritz, C., Streibig, J.C. Bioassay analysis using R. Journal of Statistical Software, 2005; 12: 1-22.
19. Bewley, J.D., Black, M. Seeds: physiology of development and germination. Plenum press, New York and London, 2nd edition. 1994;147.
20. Shekoofa, A., Bijanzadeh, E., Emam, Y., Pessarakli, M. Effect of salt stress on respiration of various wheat lines/cultivars at early growth stages. Journal of Plant Nutrition. 2013; 36, 243-250.
21. Khan, H.A., Ayub, C.M., Pervez, M.A., Bilal, R.M., Shahid, M.A., Ziaf, K. Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil and Environment. 2009; 28: 81–87.
22. Kumari, R., Vishnuvardhan, Z., Babu, K. A study on effect of NaCl stress on Kodomillet (Paspalum scrobiculatum) during germination stage. Annals of Plant Sciences. 2013; 2, 388-394.
23. Haouari, C., Nasraoui, A., Carrayol, E., Gouia, H. Response of two wheat genotype to long-term salinity stress in relation to oxidative stress and osmolyte concentration. Cereal Research Communications. 2013; 41: 388-399.
24. Alscher, R.G., Erturk, N., Heath, L.S. Role of superoxide dismutases (SODs) in oxidative stress in plants. Journal of Experimental Botany. 2002; 53: 1331-1341.
25. Lee, M.H., Cho, E.J., Wi, S.G., Bae, H., Kim, J.E., Cho, J.Y., Lee, S., Kim, J.H., Chung, B.Y. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiology and Biochemistry. 2013; 70: 325-335.
26. Muhammad, A.G., Murtaza, N., Collins, J.C., McNeilly, T., 2006. Study of salt tolerance parameters in pearl millet Pennisetum americanum L. Journal of Central European Agriculture 7: 365-376.
27. Vidossich, P., Alfonso-Prieto, M., Rovira, C. Catalases versus peroxidases: DFT investigation of H2O2 oxidation in models systems and implications for heme protein engineering. Journal of Inorganic Biochemistry. 2012; 117: 292–297.
28. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant science. 2002; 7: 405-410.
29. Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., Foyer, C.H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany. 2005; 56: 417-423.
30. Li, Y. Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan Journal of Biological Sciences. 2008; 11: 1268-1272.