Anti-candidal activities of some Myrtus Communis L. extracts obtained using accelerated solvent extraction (ASE)

Elif Ayse Erdogan¹*, Gulden Goksen² and Ayse Everest¹

¹Department of Biology, Mersin University, Mersin -33343, TURKEY.
²Department of Food Engineering, Mersin University, Mersin -33343, TURKEY.

ARTICLE INFO

Article history:
Received on: 16/09/2014
Revised on: 29/09/2014
Accepted on: 09/10/2014
Available online: 30/10/2014

Key words:
Candida albicans, Myrtus communis, ASE (Accelerated Solvent Extraction), Anti-candidal.

1. INTRODUCTION

Candidemia is known as the fourth most common nosocomial bloodstream infection. Hence, control of the spread of Candida albicans strains and treatment of infections caused by them is very important problem worldwide [1]. In the past decade, the prevalence of resistant to antifungal agents significantly increased. It makes necessary to discover new agents of anti-candidal compounds to treat infections. In particularly, Herbal agents are important in controlling spread of Candida [2,3]. In traditional medicine, the leaves of Myrtus communis have used mostly in lung and digestive disorders and in the treatment of many types of infectious including candidacies as anti-septic, anti-inflammatory agent, a mouthwash [4]. In recent research, the antifungal effects of extracts of leaves of this plant has been proven. Numerous studies have been devoted to the extraction of Myrtus communis leaves [5-8]. In particularly, Phenols in leafs is considered to be main biologically active antimicrobial chemicals produced. *In vitro* experiments have proved its inhibiting effect on Candida albicans which known the most frequent human infections [9,10].

The aims of the present study were to determined the antifungal activities of four extracts of Myrtus communis obtained with ASE and researched phenolic component of extracts.

* Corresponding Author
Department of Biology, Mersin University, Mersin -33343, TURKEY.
Mail id: eliferdogan81@gmail.com, Tel: 0507 208 94 28

2. MATERIALS AND METHODS

2.1. Plant material

Aerial parts of Myrtus communis were collected in May from Mersin, Turkey and botanical identification of the plant was done by Prof. Ayse Everest at Mersin University Biology Department.

2.2. Preparation of Extracts

The extractions of soluble compounds from Myrtus communis by Accelerated Solvent Extraction were performed by using methanol, ethanol, acetone, ethyl acetate as a solvent. The below method was modified by ASE [11].

Aliquots of Myrtus communis leaves (2.4 g) were grounded in cold-blender, passed through a 20 mesh sieve to acquire particles size of <2 mm, mixed and dispersed with diatomaceous earth (1:1) to remove moisture. Then, the samples were placed in a 66 mL stainless steel extraction cell, to perform extractions with solvents on a ASE 150 (Dionex) system.

The dry plant sample (2.4 g) was extracted by one extraction cycles with all solvent (%99 pure) at 100°C, 1500 psi during 5 min.

Then, the cell was rinsed with fresh extraction solvent and purged with a flow of nitrogen (150 psi during 90 s). The final of the experiment, the extraction solution was collected in 66 mL glass vials. This procedure was performed for all of the solvent, separately. The extracts were filtered (with a 0.45 μm membrane) and stored at -20°C in darkness until HPLC and microbial analysis.

© 2014 Elif Ayse Erdogan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
2.3. Analysis of Extracts using HPLC

The main compounds of extracts researched on Agilent 1200 HPLC equipment with a autosampler, a DAD, column under the optimum condition modified by Mradu’s method [12]. The Column was phenomenon C-18, 3 µm particle size (50x4.6 mm I.D) type. The condition of HPLC: total run time was 45 minutes, Gradient elution - Solvent A (Acetonitrile) and Solvent B (0.1% Phosphoric acid in water) . program was begun with 85 % B and was held at this concentration for the first 12 minutes, followed by 75 % eluent B for the next 10 minutes after which its concentration was again increased to 85 % for the next 8 minutes. The flow rate was 20 ml/min, the injection volume was 20µl, monitored and quantified at 280 nm.

The phenolic compounds of extracts were calculated by the formula:

\[C(x) = \frac{A_x \times C_y \times V}{S} \]

Where \(C(x) \) is the concentration of the phenolic X, \(A_x \) is the peak area of the phenolic X, \(C_y \) is the concentration of the Standard and \(V \) is the area peak of the Standard [13].

2.4. Anti-candida activity of Extracts

The extracts of Myrtus communis were tested against Candida albicans (clinis strain) to MIC (Minimal Inhibitory Concentration) and MFC (Minimum Fungicidal Concentration). MIC, lowest concentration causing complete visible growth inhibition, and MFC, lowest concentration killing 99.9% cells, were determined by broth microdilution method modified by Dabur and Zore [14, 15]. The yeast inoculum was prepared in 4 ml triptic soy broth medium, incubated at 37 ˚C and in sabouraud dextrose broth medium at 28 ˚C for 24 h before being used overnight, respectively. The culture, 12 hour-cultures were adjusted to 0.5 McFarland Standard Turbidity (~ 10^7 for yeast colony forming unit (CFU) per milliliter [16]. Two-fold serial dilutions of extracts of Myrtus communis were added to the wells of a 96-well microtiter plate. 100 µl of each dilution, ranging from 24 to 0.1 mg/ml were mixed with an equal volume of bacterial suspension (25 µl). Fluconazole antibiotic was used as positive reference standards for yeast. Then, The plates were incubated for 36 hours at 37°C and observed visually for growth (turbidity) inhibition to determine MIC. 5µl culture of all wells was inoculated on YPD agar plates for 36 hours at 37°C for determine MFC.

Table 1: The main components of Myrtus communis Extracts using HPLC and Minimal Inhibitory and Fungicidal Concentration of Extracts against Candida albicans.

<table>
<thead>
<tr>
<th>Comp. mg/g</th>
<th>Ret. time</th>
<th>MIC mg/ml</th>
<th>MFC mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallic 0.01</td>
<td>3.553</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Quercetin 2.289</td>
<td>4.225</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>Ferulic 0.018</td>
<td>16.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallic 0.019</td>
<td>3.595</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>Ferulic 0.038</td>
<td>16.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercetin 0.336</td>
<td>3.934</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>Ferulic 0.006</td>
<td>16.771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallic 2.424</td>
<td>3.551</td>
<td>0.187</td>
<td>0.375</td>
</tr>
</tbody>
</table>

We reported that all of the extracts in this study had a favorable anti-candidal activity. Acetone extract exhibited strongest activity against C. albicans with MIC value of 0.187 and MFC value of 0.375 mg/ml. Concordantly, Gallic acid was found the main component of acetone extract (2,424 mg/g). The lowest activity (MIC: 1.5 mg/ml and MFC: 3 mg/ml) were recorded in methanol extract and the quercetin (2,289 mg/g) were found the main component. Ferulic acid were found in methanol (0.018 mg/g), ethanol (0.038 mg/g) and ethyl acetate (0.006 mg/g) extracts in low amounts while it was not determined in acetone extract. Other studies have shown mostly that essential oils of plant had strong antimicrobial activity [17-20]. However, It has known that classical extraction methods commonly used for the evaluation of antifungal activities of Myrtus communis. In literature, Bajur and his colleagues reported the methanol extract of Myrtus communis leaves had antifungal activity with MIC: 0.31 mg/mL [21]. It was also shown that alcoholic extract of Myrtus communis has different degrees growth inhibition, depending on the Candida albicans strains between 25 mg/ml and 2.5 mg/mL [22]. These studies support our study with regard to strong biological activity. Accelerated Solvent Extraction (ASE) in the selection of methods for bioactivity screening.

4. CONCLUSION

In sum, We researched for the first time antifungal activity of M. communis extracts obtained using ASE. Datas showed all of the extracts of M. Communis had strong antifungal activity against C. albicans tested with MIC values ranging from 0.187 to 1.5 mg/mL; MFC ranging from 0.375 to 3 mg/mL. After 36 hours the ranges of MIC obtained with methanol, ethanol, ethyl acetate, acetone extracts were 1.5 mg/ml; 0.75 mg/ml; 0.375 mg/ml; 0.187 mg/ml; MFC were 3 mg/ml; 1.5 mg/ml; 0.75 mg/ml; 0.375 mg/ml, respectively.
activity. We were determined some phenolics (Gallic, Ferulic, Quercetin) were abundant in these extracts. We assume the inhibitory effects of the extracts increased due to ASE process. Hence, there is need further researches to expose components of extracts.

5. ACKNOWLEDGMENTS

This study was supported by Science Institute of Mersin University and MEITAM (Mersin University Advanced Technology Education, Research and Application Center). The authors thank the workers of Assist. Prof. Deniz AYAS, Chemistry expert Cihan GECGEL, Biology expert Ersin OZTURK.

6. REFERENCES

27. antibiotyka}.

How to cite this article: