Home >Archive

Volume: 3, Issue: 5, Sep-Oct, 2015
DOI: 10.7324/JABB.2015.3501

Research Article

Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin

Judith Taboula Mbogne1 2, Carine Nono Temegne1 4, Pascal Hougnandan2, Emmanuel Youmbi1 3, Libert Brice Tonfack1 5, Godswill Ntsomboh-Ntsefong1 6

  Author Affiliations


In Africa, many people suffer from nutrient deficiencies and this enhances the need for yield increase of crops like pumpkins with good nutritional qualities, while safeguarding the environment. The aim of this study was to assess the composition and specific diversity of arbuscular mycorrhizal fungi (AMF) in the rhizosphere of pumpkins under two fertilizer application systems. The experiment was conducted with a completely randomized design with a split-plot of three factors: fertilizers, pumpkin varieties and experimental sites. Dried seeds of pumpkin were sown after field preparation and at flowering and fruiting, samples of soil and root fragments were collected from the rhizosphere. In the laboratory, roots were clarified and coloured before microscopic observations. Soil samples were used for the extraction of spores through humid filtering. Spore suspension was poured into a Petri dish and spores counted with the help of a stereo microscope. The spores of AMF were identified on the basis of morphological descriptions. Results show that chemical fertilizer (T2) significantly reduces (p < 0.001) the frequency and intensity of mycorrhization compared with control (T0) and fowl droppings (T1). The hierarchical classification shows two classes (R2 = 0.63): T0 and T1; and T2. Some 15 AMF species of four genera were isolated and identified. Of these, Glomus (57.97-85.65%) and Acaulospora (12.68-40.42%) were the most abundant with high density (1086 spores/100 g of soil). Glomus intraradices was absent in Benin and present in Cameroon. Diversity indices were higher in Cameroon than in Benin.


Cucurbita spp., arbuscular mycorrhizal fungi, biodiversity, fertilizer application, Benin, Cameroon.

Citation: Judith Taboula Mbogne, Carine Nono Temegne, Pascal Hougnandan, Emmanuel Youmbi, Libert Brice Tonfack, Godswill Ntsomboh-Ntsefong. Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin. J App Biol Biotech. 2015; 3 (05): 001-010. DOI: 10.7324/JABB.2015.3501

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. CIRAD. Fruits et l\égumes, la sant\é du monde. Montpellier, f\évrier 2009, CIRAD. 16 p.

2. Palm CA, Myers RJK & Nandwa SM. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. In: Buresh, R.J., Sanchez, P.A., and Calou F. (Eds.). Replenishing soil fertility in Africa. USA. Soil Sci. Soc. Am. (SSSA). 1997; 51: 120-125.

3. de Carvalho LMJ, Gomes PB, de Oliveira Godoy RL, Pacheco S, do Monte Pedro HF, de Carvalho JLV, Nuttib MR, Neves ACL, Vieira ACRA & Ramos SRR. Total carotenoid content, \a-carotene and \ß-carotene of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 2012; 47: 337-340.

4. Chigumira NF & Grubben GJH, Cucurbita maxima Duchesne. In: Grubben GJH & Denton OA (eds.); PROTA 2: Vegetables/L\égumes. PROTA, Wageningen, Pays Bas; 2004.

5. Dodd JC. The role of arbuscular mycorrhizal fungi in agro and natural ecosystems. Agricul. 2000; 29 (1): 63-70.

6. Gianinazzi S, Gianinazzi-Pearson V, & Trouvelot A. Les mycorhizes, partie int\égrante de la plante : biologie et perspective d’utilisation. Coll. INRA, No 13, INRA, Paris. 1982.

7. Harley JL & Smith SE. Mycorrhizal symbiosis. Academic Press Inc, London; 1983.

8. Janos DP. Heterogeneity and scale in tropical vesicular-arbuscular mycorrhiza formation. In: Mycorrhizas in ecosystems. Read DJ, Lewis DH, Fitter AH & Alexander IJ (Eds.). CAB Int. 1992; 276-282.

9. Yadi S. Mycorrhizal inoculum production technique for land rehabilitation. Jurnal Manajemen Hutan Tropika. 2002; 8 (1): 51-64.

10. Miyasaka SC, Habte M, Friday JB, & Johnson EV. Manual on Arbuscular Mycorrhizal Fungus Production and Inoculation Techniques. Soil and Crop Management, SCM-5. 2003; 1-4.

11. Ngonkeu MEL. Biodiversit\é et potentiel des mycorhizes à arbuscules de certaines zones agro-\écologiques du Cameroun. Thèse de Doctorat 3e cycle, Universit\é de Yaound\é I. 2003; 258 p.

12. Onguene AN & Kuyper. Diversity and abundance of mycorrhizal association in the rain forest of South Cameroon. Tropenbos Cameroon Programme. Forest Ecology Management. 2001; 140: 277-287.

13. Gianquinto G & Borin M. Effect of organic and mineral fertilizer application and soil type on the growth and yield of processing tomatoes (Lycopersicon esculentum Mill.). Rivista di Agronomia. 1990; 24 (4): 339-348.

14. Phillips JM & Haymann DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 1970; 55: 157-160.

15. Gendermann JW & Nicholson TH. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963; 46: 235-244.

16. Daniels BA & Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck, N. C. (ed). Principles and methods of mycorrhizal research. The St Paul Minn, American Phytopathological Society, USA, 1982; p. 29-36.

17. Oehl F, Sieverding E, Ineichen K, Mader P, Boller T & Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Applied Environmental Microbiology. 2003; 69: 2816-2824.

18. Brito I, Goss MJ, de Carvalho M, Chatagnier O & van Tuinen D. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil and Tillage Research. 2012; 121: 63-67.

19. Josserant M. La description des champignons sup\érieurs. Editions le chevalier, Paris, France; 1983, 392 p.

20. Dandan Z & Zhiwei Z. Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Applied Soil Ecology. 200; 37: 118-128.

21. Shannon CE. A mathematical theory for communication. Bell Syst. Tech. J. 1948; 27: 379-423 & 623–656.

22. Pielou EC. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966; 13: 131-144.

23. Sch\üßler A, Schwarzott D & Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research. 2000; 105: 1413-1421.

24. Lamontagne L & Nolin MC. Dossier des noms de sols du Qu\ébec 1997. SISCan (Système d’Information des Sols du Canada). Equipe p\édologique du Quebec, Centre de recherches et de d\éveloppement sur les sols et les grandes cultures, Agriculture et Agroalimentaire Canada (Sainte-Foy).

25. Bagyaraj DJ. Ecology of vesicular arbuscular mycorrhizae. In: Arora D. K., Rai B., Mukerji K. G., Knudsen G. R. (Eds.), Handbook of applied mycology: soil and plants. Marcel Dekker, Inc., New York, 1991; pp. 3-34.

26. Baize D. Guide des analyses en p\édologie: choix-expression-pr\ésentation interpr\étation. 2ème \édition. INRA, Paris. 2000; 257 p.

27. Boyer J. Les sols ferralitiques. Vol. X. Facteurs de fertilit\é et utilisation des sols. Paris: Orstom, 1982.

28. Bivoko D-RR, Ahonzo-Niamke SL & Zeze A. Impact des propri\ét\és physicochimiques des sols de culture du manioc sur l’abondance et la diversit\é des communaut\és de champignons mycorhiziens à arbuscules dans la zone agro\écologique d’Azaguie, sud-est de la côte d’ivoire. Agronomie Africaine. 2013; 25 (3): 251-264.

29. Bhadalung NN, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A & Rungchuang J. Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant and Soil. 2005; 270 (1-2): 371-382.

30. Leyval C, Steinberg C, Norini MP, Beguiristain T, Edel-Hermann V, Leglize P, Gautheron N, Lebeau T & Houot S. Impact d’amendements organiques sur la structure des communaut\és microbiennes des sols : Choix des m\éthodes, validation et r\ésultats. Étude et Gestion des Sols. 2009; 16: 299-312.

31. Guissou T, B\ AM, Guinko BS, Duponnois R & Plenchette C. Influence des phosphates naturels et des mycorhizes à v\ésicules et à arbuscules sur la croissance et la nutrition min\érale de Zizyphus mauritiana Lam. dans un sol à pH alcalin. Ann. Sci. For. 1998; 55: 925-931.

32. Celik I, Ortas I & Kilic S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research. 2004; 78: 59-67.

33. Liu B & Ristaino JB. Microbial community structure in soils from organic and conventional agroecosystems. Phytopathology. 2003; 96: S53.

34. Girvan MS, Bullimore J, Ball AS, Prett, JN & Osborn AM. Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Applied & Environmental Microbiology, 2004; 70: 2692-2701

35. Okur N, Altindisli A, Cengel M, Gocmez S & Kayikcioglu HH. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agriculture & Forestry. 2009; 33:413-423.

36. Sousa C, da S, Menezes RSC, Sampaio EVm de SB, Oehl F, Costa Maia L, Garrido M, da S, Lima F & de S. Occurrence of arbuscular mycorrhizal fungi after organic fertilization in maize, cowpea and cotton intercropping systems. Acta Sci. Agron. 2012; 34 (2).

37. Peng YL, Yang MN & Cai XB. Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet plateau. Ying Yong Sheng Tai XueBao. 2010; 21 (5): 1258-63.

38. Maksoud MA, Haggag LF, Azzazy MA & Saad RN. Effect of VAM inoculation and phosphorus application on growth and nutrient content (P and K) of Tamarindus indica L. Seedlings. Ann. Afric. Sci. Caito. 1994; 39: 355-363.

39. Abbott LK & Robson AD. Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agriculture, Ecosystem and Environment. 1991; 35: 121-150.

40. Straker CJ, Hilditch AJ & Rey MEC. Arbuscular mycorrhizal fungi associated with cassava (Manihot esculenta Crantz). South African Journal of Botany. 2010; 76: 102-111.

41. Singh S, Pandey A, Chaurasia B & Palni LMS. Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites. Biology and Fertility of Soils. 2008; 44: 491-500.

42. Muthukumar T, Sha LQ, Yang XD, Cao M, Tang JW & Zheng Z. Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza. 2003; 13: 289-297.

43. Zhao ZW, Xia, YM, Qin, XZ, Li, XW, Cheng, LZ, Sha T & Wang GH. Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza. 2001 ; 11: 159-162.

44. Husband R, Herre EA, & Young JPW. Temporal variation in the arbuscular mycorrhizal communities colonizing seedlings in a tropical forest. FEMS Microbiology Ecology. 2002; 42: 131-136.

Article Metrics

Similar Articles

Genotype x environment interaction and kernel yield-stability of groundnut (Arachis hypogaea L.) in Northern Cameroon
Souina Dolinassou,Jean Baptiste Noubissie Tchiagam,Alain Djiranta Kemoral and Nicolas Njintang Yanou