Leaf senescence and its regulation with phytohormones and essential elements: An overview

Shatrupa Singh Madhulika Singh Sanskriti Bisht Jai Gopal Sharma   

Open Access   

Published:  Jan 07, 2022

Abstract

Leaf senescence is a crucial developing phase that requires the orderly disassembly of macromolecules in order to transport the nutrients from leaves into other organs and is life-threatening for plants capability. The leaf senescence is the result of a multifaceted and highly regulated mechanism involving the corresponding activities of several pathways. A lot of progress has been made recently in understanding signaling pathways of senescence, as well as how to complete the orderly process of degeneration. This paper mainly covers recent developments in the senescence of leaf and describes the function of phytohormones and essential elements from the molecular network dynamics.


Keyword:     Aging cell death oxidative stress remobilization of nutrient


Citation:

Singh S, Singh M, Bisht S, Sharma JG. Leaf senescence and its regulation with phytohormones and essential elements: An overview. J Appl Biol Biotech, Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1.Woo HR, Kim HJ, Lim PO, Nam HG. Leaf senescence: systems and dynamics aspects. Annu Rev Plant Biol 2019;70(1):347-76. https://doi.org/10.1146/annurev-arplant-050718-095859

2. Shahri W, Tahir I. Flower senescence: some molecular aspects. Planta 2014;239(2):277-97. https://doi.org/10.1007/s00425-013-1984-z

3. Lim PO, Woo HR, Nam HG. Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 2003;8(6):272-8. https://doi.org/10.1016/S1360-1385(03)00103-1

4. Tripathi SK, Tuteja N. Integrated signaling in flower senescence: an overview. Plant Signal Behav 2007;2(6):437-45. https://doi.org/10.4161/psb.2.6.4991

5. Mayta ML, Hajirezaei MR, Carrillo N, Lodeyro AF. Leaf senescence: the chloroplast connection comes of age. Plants (Basel) 2019;8(11):495. https://doi.org/10.3390/plants8110495

6. Pennazio S. Plant senescence. A complex lesson of biology of development. Riv Biol 2009;102(3):399-419.

7. Poovaiah BW. Role of calcium in ripening and senescence. Commun Soil Sci Plant Anal 1979;10(1):83-8. https://doi.org/10.1080/00103627909366880

8. Woo HR, Kim HJ, Nam HG, Lim PO. Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general. J Cell Sci 2013;126(21):4823-33. https://doi.org/10.1242/jcs.109116

9. Woo HR, Masclaux-Daubresse C, Lim PO. Plant senescence: how plants know when and how to die. J Exp Bot 2018;69(4):715-8. https://doi.org/10.1093/jxb/ery011

10. Bresson J, Bieker S, Riester L, Doll J, Zentgraf U. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. J Exp Bot 2018;69(4):769-86. https://doi.org/10.1093/jxb/erx246

11. Lu H, Gordon MI, Amarasinghe V, Strauss SH. Extensive transcriptome changes during seasonal leaf senescence in fieldgrown black cottonwood (Populus trichocarpaNisqually-1). Sci Rep 2020;10(1):6581. https://doi.org/10.1038/s41598-020-63372-2

12. Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol 2003;6(1):79-84. https://doi.org/10.1016/S1369526602000092

13. Munné-Bosch S, Alegre L. Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 2004;31(3):203-16. https://doi.org/10.1071/FP03236

14. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 2013;111(6):1021-58. https://doi.org/10.1093/aob/mct067

15. Buchanan-Wollaston V, Earl S, Harrison E, Mathas, E, Navabpour S, Page T, et al. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol J 2003;1(1):3-22. https://doi.org/10.1046/j.1467-7652.2003.00004.x

16. Hunter DA, Yoo SD, Butcher SM, McManus MT. Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. Plant Physiol 1999;120(1):131-42. https://doi.org/10.1104/pp.120.1.131

17. Kende H. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 1993;44(1):283-307. https://doi.org/10.1146/annurev.pp.44.060193.001435

18. Johnson PR, Ecker JR. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 1998;32:227-54. https://doi.org/10.1146/annurev.genet.32.1.227

19. Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, Mackerness SAH. Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ 1998;21(7):685-94. https://doi.org/10.1046/j.1365-3040.1998.00325.x

20. Orozco-Cardenas M, Ryan CA. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 1999;96(11):6553-7. https://doi.org/10.1073/pnas.96.11.6553

21. Pellinen R, Palva T, Kangasjärvi J. Short communication: subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 1999;20(3):349-56. https://doi.org/10.1046/j.1365-313X.1999.00613.x

22. Häffner E, Konietzki S, Diederichsen E. Keeping control: the role of senescence and development in plant pathogenesis and defense. Plants (Basel) 2015;4(3):449-88. https://doi.org/10.3390/plants4030449

23. Gazzarrini S, McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 2001;4(5):387- 91. https://doi.org/10.1016/S1369-5266(00)00190-4

24. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 2012;28:489-521. https://doi.org/10.1146/annurev-cellbio-092910-154055

25. Vanhee C, Batoko H. Autophagy involvement in responses to abscisic acid by plant cells. Autophagy 2011;7(6):655-6. https://doi.org/10.4161/auto.7.6.15307

26. Fischer AM. The complex regulation of senescence. Crit Rev Plant Sci 2012;31(2):124-47. https://doi.org/10.1080/07352689.2011.616065

27. Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 2010;61:49-64. https://doi.org/10.1146/annurev-arplant-042809-112308

28. Kim J, Kim JH, Lyu JI, Woo HR, Lim PO. New insights into the regulation of leaf senescence in Arabidopsis. J Exp Bot 2018;69(4):787-99. https://doi.org/10.1093/jxb/erx287

29. Pereira J, Pimentel C, Amaral C, Menezes RA, Rodrigues-Pousada C. Yap4 PKA- and GSK3-dependent phosphorylation affects its stability but not its nuclear localization. Yeast (Chichester Engl) 2009;26(12):641-53. https://doi.org/10.1002/yea.1711

30. Hanlon SE, Rizzo JM, Tatomer DC, Lieb JD, Buck MJ. The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 2011;6(4):e19060. https://doi.org/10.1371/journal.pone.0019060

31. Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Métraux JP, et al. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 2003;34(2):217-28. https://doi.org/10.1046/j.1365-313X.2003.01717.x

32. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, et al. Ausubel Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 2005;102(5):1791-6. https://doi.org/10.1073/pnas.0409450102

33. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005;43:205-27. https://doi.org/10.1146/annurev.phyto.43.040204.135923

34. Spoel SH, Dong X. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 2008;3(6):348-51. https://doi.org/10.1016/j.chom.2008.05.009

35. Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, van Loon LC, et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 2008;147(3):1358-68. https://doi.org/10.1104/pp.108.121392

36. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 2000;97(21):11655-60. https://doi.org/10.1073/pnas.97.21.11655

37. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 2003;15(3):760-70. https://doi.org/10.1105/tpc.009159

38. Miao Y, Zentgraf U. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 2007;19(3):819-30. https://doi.org/10.1105/tpc.106.042705

39. Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 2004;55(6):853-67. https://doi.org/10.1007/s11103-005-2142-1

40. Hu Y, Dong Q, Yu D. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 2012;185-6:288-97. https://doi.org/10.1016/j.plantsci.2011.12.003

41. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, et al. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENSIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 2009;149(4):1797-809. https://doi.org/10.1104/pp.108.133926

42. Penninckx IA, Thomma BP, Buchala A, Métraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 1998;10(12):2103-13. https://doi.org/10.1105/tpc.10.12.2103

43. Verberne MC, Hoekstra J, Bol JF, Linthorst HJ. Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J 2003;35(1):27-32. https://doi.org/10.1046/j.1365-313X.2003.01778.x

44. Wu K, Zhang L, Zhou C, Yu CW, Chaikam V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 2008;59(2):225-34. https://doi.org/10.1093/jxb/erm300

45. Lippman Z, May B, Yordan C, Singer T, Martienssen R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLOS Biol 2003;1(3):E67. https://doi.org/10.1371/journal.pbio.0000067

46. Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, et al. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 2006;20(10):1283-93. https://doi.org/10.1101/gad.1417706

47. Kim J, Patterson SE, Binder BM. Reducing jasmonic acid levels causes ein2 mutants to become ethylene responsive. FEBS Lett 2013;587(2):226-30. https://doi.org/10.1016/j.febslet.2012.11.030

48. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 1999;284(5423):2148-52. https://doi.org/10.1126/science.284.5423.2148

49. Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol 2004;136(2):2921-7. https://doi.org/10.1104/pp.104.050393

50. Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 2003;51(1):21-37. https://doi.org/10.1023/A:1020780022549

51. Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, et al. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 2003;15(7):1646-61. https://doi.org/10.1105/tpc.012237

52. Li Z, Peng J, Wen X, Guo H. Ethylene-insensitive3 is a senescenceassociated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 2013;25(9):3311-28. https://doi.org/10.1105/tpc.113.113340

53. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004;16(12):3460-79. https://doi.org/10.1105/tpc.104.025833

54. Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Rev Agric Sci 2015;3:1-24. https://doi.org/10.7831/ras.3.1

55. Hochmuth G. Iron (Fe) nutrition of plants. Soil Water Sci 2011;2011(8). EDIS. Available via https://edis.ifas.ufl.edu/ss555. 2018. https://doi.org/10.32473/edis-ss555-2011

56. Mari S, Bailly C, Thomine S. Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 2020;477(1):259- 74. https://doi.org/10.1042/BCJ20190188

57. Fischer, AM. Nutrient remobilization during leaf senescence. In: Gan S (ed.). Annual Plant Reviews, Senescence Processes in Plants, Blackwell Publishing Ltd, Oxford, UK, vol. 26, pp 87-107, 2007. https://doi.org/10.1002/9780470988855.ch5

58. Agüera E, De la Haba P. Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply. Biol Plant 2018;62(3):401-8. https://doi.org/10.1007/s10535-018-0798-z

59. Ahmad MSA, Ashraf M. Essential roles and hazardous effects of nickel in plants. In: Whitacre DM (ed.). Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, vol. 214, pp 125-67, 2012. https://doi.org/10.1007/978-1-4614-0668-6_6

60. Amjad M, Raza H, Murtaza B, Abbas G, Imran M, Shahid M, et al. Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids. Plants (Basel) 2019;9(1):5. https://doi.org/10.3390/plants9010005

61. Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P. Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 2015;6:754. https://doi.org/10.3389/fpls.2015.00754

62. de Macedo FG, Bresolin JD, Santos EF, Furlan F, Lopes da Silva WT, Polacco JC, et al. Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Front Plant Sci 2016;7:1358. https://doi.org/10.3389/fpls.2016.01358

63. Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. Front Plant Sci 2014;5:442. https://doi.org/10.3389/fpls.2014.00442

64. Borpatragohain P, Rose TJ, Liu L, Barkla BJ, Raymond CA, King GJ. Remobilization and fate of sulphur in mustard. Ann Bot 2019;124(3):471-80. https://doi.org/10.1093/aob/mcz101

65. Wang X, Zhao X, Jiang C, Li C, Cong S, WuD, et al. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J Integr Agric 2015;14(5):856-63. https://doi.org/10.1016/S2095-3119(14)60848-0

66. Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N. A potential role of flag leaf potassium in conferring tolerance to drought-induced leaf senescence in barley. Front Plant Sci 2016;7:206. https://doi.org/10.3389/fpls.2016.00206

67. Stigter KA, Plaxton WC. Molecular mechanisms of phosphorus metabolism and transport during leaf senescence. Plants (Basel) 2015;4(4):773-98. https://doi.org/10.3390/plants4040773

68. Wen B, Xiao W, Mu Q, Dongmei Li, Xiude C, Hongyu W, et al. How does nitrate regulate plant senescence? Plant Physiol Biochem 2020;157:60-9. https://doi.org/10.1016/j.plaphy.2020.08.041

69. Bushnell WR. Delay of senescence in wheat leaves by cytokinins, nickel, and other substances. Can J Bot 1966;44(11):1485-93. https://doi.org/10.1139/b66-163

70. Jane?kováH, Husi?kováA, FerrettiU, Pr?ina M, Pila?ová E, Pla?ková L, et al. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant Cell Environ 2018;41(8):1870- 85. https://doi.org/10.1111/pce.13329

71. Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants 2017;24(3):17112. https://doi.org/10.1038/nplants.2017.112

72. Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 2004;45(8):1053-62. https://doi.org/10.1093/pcp/pch119

73. Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 2006;11(9):440-8. https://doi.org/10.1016/j.tplants.2006.07.004

74. Wang R, Tischner R, Gutiérrez RA, Hoffman M, Xing X, Chen M, et al. Genomic analysis of the nitrate response using a nitrate reductasenull mutant of Arabidopsis. Plant Physiol 2004;136(1):2512-22. https://doi.org/10.1104/pp.104.044610

75. Kudo T, Kiba T, Sakakibara H. Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 2010;52(1):53-60. https://doi.org/10.1111/j.1744-7909.2010.00898.x

76. Lacombe B, Achard P. Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 2016;34:1-8. https://doi.org/10.1016/j.pbi.2016.06.007

77. Zürcher E, Müller B. Cytokinin synthesis, signaling, and function- advances and new insights. Int Rev Cell Mol Biol 2016;324:1-38. https://doi.org/10.1016/bs.ircmb.2016.01.001

78. Buchanan BB. Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 1980;31(1):341-74. https://doi.org/10.1146/annurev.pp.31.060180.002013

79. Marschner H. Functions of mineral nutrients: micronutrients. In: Mineral Nutrition in Higher Plants, 2nd edition, Academic Press, London, UK, 1995, pp 313-404. https://doi.org/10.1016/B978-012473542-2/50011-0

80. Wyttenbach A, Furrer V, Tobler L. The concentration ratios plant to soil for the stable elements Cs, Rb and K. Sci Total Environ 1995;173- 4:361-7. https://doi.org/10.1016/0048-9697(95)04737-9

81. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 2003;21(10):1215-21. https://doi.org/10.1038/nbt865

82. Kobayashi NI, Iwata N, Saito T, Suzuki H, Iwata R, Tanoi K, et al. Application of 28Mg for characterization of Mg uptake in rice seedling under different pH conditions. J Radioanal Nucl Chem 2013;296(1):531-34. https://doi.org/10.1007/s10967-012-2010-9

83. Jacoby B. Calcium-magnesium ratios in the root medium as related to magnesium uptake by citrus seedlings. Plant Soil 1961;15(1):74-80. https://doi.org/10.1007/BF01421750

84. Tanaka H, Ougimoto T, Sahashi H. Effects of calcium and magnesium of nutrient solution on their composition in leaves of tomato seedlings. Jpn J Soil Sci Plant Nutr 1991;62:507-11.

85. Bennett WF. Better crops. In: Bennett WF (ed.). Nutrient Deficiencies and Toxicities in Crop, APS Publishing, St Paul, MN, vol. 95, 2011, pp 5-6.

86. Uchida R. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva JA, Uchida R (eds.). College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 2000, pp 31-55.

87. Tamburini G, Berti A, Morari F, Marini L. Degradation of soil fertility can cancel pollination benefits in sunflower. Oecologia 2016;180(2):581-7. https://doi.org/10.1007/s00442-015-3493-1

88. Aitken RL, Dickson T, Hailes KJ, Moody PW. Response of fieldgrown maize to applied magnesium in acidic soils in north-eastern Australia. Aust J Agric Res 1999;50(2):191-8. https://doi.org/10.1071/A98149

89. Moss GI, Higgins ML. Magnesium influences on the fruit quality of sweet orange (Citrus sinensis L. osbeck). Plant Soil 1974;41(1):103- 12. https://doi.org/10.1007/BF00017948

90. Hariadi Y, Shabala S. Screening broad beans (Vicia faba) for magnesium deficiency. I. Growth characteristics, visual deficiency symptoms and plant nutritional status. Funct Plant Biol 2004;31(5):529-37. https://doi.org/10.1071/FP03201

91. Palit S, Sharma A, Talukder G. Effect of cobalt on plants. Bot Rev 1994;60(2):149-81. https://doi.org/10.1007/BF02856575

92. Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, et al. The leaf ionome as a multivariable system to detect a plant's physiological status. Proc Natl Acad Sci U S A 2008;105:12081-6. https://doi.org/10.1073/pnas.0804175105

93. Hermans C, Vuylsteke M, Coppens F,Cristescu SM, Harren F, Verbruggen N. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. N Phytol 2010;187(1):132-44. https://doi.org/10.1111/j.1469-8137.2010.03257.x

94. Verbruggen N, Hermans C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013;368(1-2):87-99. https://doi.org/10.1007/s11104-013-1589-0

95. Wilkinson S, Davies WJ. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 2010;33(4):510-25. https://doi.org/10.1111/j.1365-3040.2009.02052.x

96. Hermans C, Vuylsteke M, Coppens F, Craciun A, Inzé D, Verbruggen N. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytol 2010;187(1):119-31. https://doi.org/10.1111/j.1469-8137.2010.03258.x

97. Sobeih WY, Dodd IC, Bacon MA, Grierson D, Davies WJ. Longdistance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial rootzone drying. J Exp Bot 2004;55(407):2353-63. https://doi.org/10.1093/jxb/erh204

98. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M. Physiological functions of beneficial elements. Curr Opin Plant Biol 2009;12(3):267-74. https://doi.org/10.1016/j.pbi.2009.04.009

99. Tanoi K, Kobayashi NI. Leaf senescence by magnesium deficiency. Plants 2015;4(4):756-72. https://doi.org/10.3390/plants4040756

100. Guo Y, Gan SS. Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 2014;65(14):3901- 13. https://doi.org/10.1093/jxb/eru248

Article Metrics

2 Absract views 0 PDF Downloads 2 Total views

Related Search

By author names


    Warning: Cannot modify header information - headers already sent by (output started at /home/jabonlin/public_html/jab_php/abstract.php:243) in /home/jabonlin/public_html/jab_php/articlemodule/searchArticles.php on line 1162

    Warning: Invalid argument supplied for foreach() in /home/jabonlin/public_html/jab_php/abstract.php on line 819

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379
Similar Articles

Asparagus racemosus extract increases the life span in Drosophila melanogaster

K. V. Kiran Kumar, K. S. Prasanna, J. S. Ashadevi

Impact of Phyllanthus amarus extract on antioxidant enzymes in Drosophila melanogaster

N. Manasa, J. S. Ashadevi

Alterations in antioxidant defense system in hepatic and renal tissues of rats following aspartame intake

Saeed A. Alwaleedi

Dietary Supplementation of Citric acid (monohydrate) Improves Health Span in Drosophila melanogaster

Komal Panchala, Kesha Patelb , Anand K. Tiwaria

Biochemical Modulations in Duttaphrynus melanostictus Tadpoles, Following Exposure to Commercial Formulations of Cypermethrin: An Overlooked Impact of Extensive Cypermethrin use

David Muniswamy, Shrinivas S Jadhav, Kartheek R Malowade

DNP induced oxidative stress on blood components ameliorated by Pyrrole derivative of Tinospora cordifolia

K. C. Rashmi, H. S. Aparna

Management of heat stress in Drosophila melanogaster with Abhrak bhasma and ascorbic acid as antioxidant supplements

Rambhadur P. Subedi, Rekha R. Vartak, Purushottam G. Kale

Antioxidant and antihyperlipidemic effects of aqueous seed extract of Daucus carota L. in triton ×100-induced hyperlipidemic mice

Habibu Tijjani, Abubakar Mohammed, Sani Muktar, Saminu Musa, Yusuf Abubakar, Adegbenro Peter Adegunloye, Ahmed Adebayo Ishola, Enoch Banbilbwa Joel, Carrol Domkat Luka, Adamu Jibril Alhassan

Biochemical and liver histological changes in rats exposed to sub-lethal dose of Uproot-pesticide and the protective potentials of nutritional supplements

Cosmas Onyekachi Ujowundu, Kingsley Isaac Ogamanya, Favour Ntite Ujowundu, Victoria Ojone Adejoh, Calistus I. Iheme, Kalu Okereke Igwe

Biochemical and ultrastructural alterations in the brain of mice induced by aqueous leaf extract of a medicinal plant, Lantana camara L. and its amelioration by nimodipine and flunarizine

H. Ashalata Singha, Mahuya Sengupta, Meenakshi Bawari

Chronic cold exposure aggravates oxidative stress in reproductive organs of STZ-induced diabetic rats: Protective role of Moringa oleifera

Hanumanthappa Rakesh, Saumya S. Mani, Piler Mahaboob Basha

Correlates of sperm quality parameters and oxidative stress indices in diabetic rats exposed to cold stress: Role of Moringa oleifera leaf extract

Piler Mahaboob Basha, Hanumanthappa Rakesh, Saumya S. Mani