Assessment of sublethal toxicity using proliferation markers in fish cell line-ICG exposed to agrochemicals

Ankita Salunke Parth Pandya Ankur Upadhyay Pragna Parikh   

Open Access   

Published:  Jan 05, 2022

Abstract

The purpose of this study was to determine the cytotoxic impact of four agrochemicals on Catla catla Hamilton 1822 Indian Catla catla gill cell line (ICG): insecticide [imidacloprid (IMI)], fungicide [curzate (CZ)], herbicide [pyrazosulfuron-ethyl (PE)], and fertilizer micronutrients (MN). The cytotoxic study was carried out by following the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method for 96 hours and inhibition concentration (IC50) values were determined. For further subacute studies, sublethal concentrations (1/20th of IC50 as low dose, 1/10th of IC50 as medium dose, and 1/5th of IC50 as high dose) were selected. The ICG cells were exposed to all agrochemicals for 7 days and toxicity was analyzed with respect to untreated control. The morphological changes were observed and Trypan blue assay was used to understand the effect of agrochemicals on the ICG cells viability. The study reported a dose-dependent alteration in morphology and viability in ICG cells when exposed to agrochemicals. Furthermore, the expression of proliferative markers like proliferating cell nuclear antigen and cyclin genes (cyclin E and A) were analyzed through quantitative polymerase chain reaction. There was a significant decrease observed in gene expression of proliferating cell nuclear antigen, cyclin A, and cyclin E, which indicates the toxicity of agrochemicals IMI, CZ, PE, and MN, resulting in alterations in the cell cycle of the ICG cell line.


Keyword:     Agrochemicals fish gill cell line cytotoxicity cell viability proliferation


Citation:

Salunke A, Pandya P, Upadhyay A, Parikh P. Assessment of sublethal toxicity using proliferation markers in fish cell lineICG exposed to agrochemicals. J Appl Biol Biotech, Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Ali U, Syed JH, Malik RN, Katsoyiannis A, Li J, Zhang G, et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci Total Environ 2014;476-7. https://doi.org/10.1016/j.scitotenv.2013.12.107

2. Anbarkeh FR, Nikravesh MR, Jalali M, Sadeghnia HR, Sargazi Z. The effect of diazinon on cell proliferation and apoptosis in testicular tissue of rats and the protective effect of vitamin E. Int J Fertil Steril 2019;13(2):154-60.

3. Ansoar-Rodríguez Y, Christofoletti CA, Marcato AC, Correia JE, Bueno OC, Malaspina O, et al. Genotoxic potential of the insecticide imidacloprid in a non-target organism (Oreochromis niloticus-Pisces). J Environ Prot 2019;6:1360-7. https://doi.org/10.4236/jep.2015.612118

4. Pandya P, Parikh P, Ambegaonkar A. Evaluating the toxic potential of agrochemicals on the hypothalamic-pituitary-thyroid axis in tilapia (Oreochromis mossambicus). J Appl Ichthyol 2020;36(2):203-11. https://doi.org/10.1111/jai.13998

5. Alewu B, Nosiri C. Pesticides and human health. In: Stoytcheva M (ed.). Pesticides in the modern world-effects of pesticides exposure. InTech, Rijeka, Croatia pp 231-50, 2011.

6. Arora VK, Nath JC, Singh CB. Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTORPotato model. Agricult Water Manage 2013;124:69-76. https://doi.org/10.1016/j.agwat.2013.03.021

7. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 2016;1-8. https://doi.org/10.3389/fpubh.2016.00148

8. Caron-Beaudoin É, Viau R, Sanderson JT. Effects of neonicotinoid pesticides on promoter-specific aromatase (CYP19) expression in Hs578t breast cancer cells and the role of the VEGF pathway. Environ Health Perspect 2018;126(4):47014. https://doi.org/10.1289/EHP2698

9. Saha NC, Giri SK, Chatterjee N, Biswas SJ, Bej S. Evaluation of acute toxicity of dichlorvos (Nuvan) to freshwater fish, Oreochromis mossambicus (W. K. H. Peters, 1852) and their ethological changes. Int Educ Sci Res J 2016;2(7):47-9.

10. Sarkar C, Bej S, Saha NC. A study on the acute toxicity of Triazophos to Branchiura sowerbyi (Beddard, 1982) and their behavioural changes. Int J Sci Res 2016;5(5):730-2.

11. Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS. Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress. Chemosphere 2017;184:1-12. https://doi.org/10.1016/j.chemosphere.2017.05.151

12. Upadhyay A, Pandya P, Parikh P. Acute exposure of pyrazosulfuron ethyl induced haematological and blood biochemical changes in the freshwater teleost fish Oreochromis mossambicus. Int J Adv Res Biol Sci 2014;1(2):179-86.

13. Joseph B, Raj SJ. Impact of pesticide toxicity on selected biomarkers in fishes. Int J Zoo Res 2011;(7):212-22. https://doi.org/10.3923/ijzr.2011.212.222

14. Roux F. Fish cell lines and their potential uses in ecotoxicology: from cytotoxicity studies and mixture assessment to a co-culture model and mechanistic analyses. Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden, 2015.

15. Sarkar C, Bej S, Saha NC. Acute toxicity of triazophos to common carp (Cyprinus Carpio) fry and their behavioural changes. Paripex Indian J Res 2016;5(6):19-21.

16. Saha NC, Giri SK, Chatterjee N, Biswas SJ, Bej S. Acute toxicity of dichlorvos to Branchiura sowerbyi (Beddard, 1982). Glob J Res Analys 2016;5(5):138-9.

17. Saha NC, Giri SK, Chatterjee N, Biswas SJ, Bej S. Acute toxic effects of Mancozeb to fish Oreochromis mossambicus (W. K. H. Peters, 1852) and their behaviour. Int J Adv Res Biol Sci 2016;3(6):40-4.

18. Bej S, Ghosh K, Chatterjee A, Saha NC. Assessment of biochemical, hematological and behavioral biomarkers of Cyprinus carpio on exposure to a type-II pyrethroid insecticide Alpha-cypermethrin. Environ Toxicol Pharmacol 2021;87:103717. https://doi.org/10.1016/j.etap.2021.103717

19. Bej S, Chatterjee HN, Giri L, Mukhopadhyay KS, Ganguly P, Mukherjee S. Modulation of blood profile of Cyprinus carpio exposed to Imidacloprid. Int J Life Sci 2017;5(4):627-30.

20. Kasi Elumalai L. Synergistic effect of seaweed manure and Bacillus sp. on growth and biochemical constituents of Vigna radiata L. J Biofertil Biopest 2012;03(03. https://doi.org/10.4172/2155-6202.1000121

21. Dubey A, Goswami M, Yadav K, Mishra A, Kumar A. Establishment of a novel muscle cell line from Wallago attu for in -vitro study of pesticide toxicity. Gene Cell Tissue 2015;2(1):1-7. https://doi.org/10.17795/gct-25568

22. Bols NC, Dayeh VR. Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. Biochem Mol Biol Fishes 2005;6:43-84. https://doi.org/10.1016/S1873-0140(05)80005-0

23. Patel B, Pandya P, Parikh P. Effects of agrochemicals on antioxidant enzymes and lipid peroxidation in Oreochromis mossambicus and Labeo rohita. Int J Zoo Appl Biosci 2016;1(3):163-72.

24. Patel B, Upadhyay A, Parikh PH. Histological changes in the tissues of Oreochromis mossambicus and Labeo rohita on exposure to imidacloprid and curzate. Int J Res Appl Nat Soc Sci 2016;4(5):149-60.

25. Ahmed VPI, Chandra V, Sudhakaran R, Kumar SR, Sarathi M, Babu VS, et al. Development and characterization of cell lines derived from rohu, Labeo rohita (Hamilton), and catla, Catla catla (Hamilton). J Fish Dis 2009;32(3):211-8. https://doi.org/10.1111/j.1365-2761.2008.00966.x

26. Lakra WS, Swaminathan TR, Joy KP. Development, characterization, conservation and storage of fish cell lines : a review. 2011;1-20. https://doi.org/10.1007/s10695-010-9411-x

27. Yadav K, Lakra WS, Sharma J, Goswami M, Singh A. Development and characterization of a cell line TTCF from endangered mahseer Tor tor (Ham.). Fish Physiol Biochem 2011;38:1035-45. https://doi.org/10.1007/s10695-011-9588-7

28. Goswami M, Sharma BS, Tripathi AK, Yadav K, Bahuguna SN, Nagpure NS, et al. Development and characterization of cell culture systems from Puntius Tor chelynoides (McClelland). Gene 2012;500(1):140-7. https://doi.org/10.1016/j.gene.2012.03.016

29. Goswami M, Nagpure NS, Jena JK. Fish cell line repository: an enduring effort for conservation. Curr Sci 2014;107(5):738-9.

30. Taju G, Majeed SA, Nambi KS, Hameed AS. In-vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 2014;161(1):41-52. https://doi.org/10.1016/j.cbpc.2014.01.007

31. Nagpure NS, Mishra AK, Ninawe AS, Rasal A, Dubey A, Kumar A, et al. Molecular and cytogenetic characterization of fish cell lines and its application in aquatic research. Natl Acad Sci Lett 2016;39(1):11-6. https://doi.org/10.1007/s40009-015-0365-5

32. Sadekarpawar S, Desai B, Parikh P. Acute toxicity and behavioural responses of Oreochromis mossmbicus (Peters, 1852) to insecticide, fungicide and plant nutrient. Biohelica 2010;1(2):16-21. 33.

33. Sadekarpawar S, Pandya P, Upadhyay A, Parikh PA comparative assessment of trace metal accumulation in Oreochromis mossambicus and Labeo rohita exposed to plant nutrient librel TM. Int J Curr Adv Res 2015;4(10):441-9.

34. Pandya P, Parikh P. Agrochemicals induced gene expression alterations in O. mossambicus. Int J Adv Res 2016;4(6):830-40. https://doi.org/10.21474/IJAR01/743

35. Pandya P, Upadhyay A, Thakkar B, Parikh P. Evaluating the toxicological effects of agrochemicals on glucocorticoid receptor and serum cortisol level in Mozambique tilapia. Cogent Biol 2018;4(1):1480338 2017. https://doi.org/10.1080/23312025.2018.1480338

36. Kubben FJ, Peeters-Haesevoets A, Engels LG, Baeten CG, Schutte B, Arends JW, et al. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 1994;35(4):530- 5. https://doi.org/10.1136/gut.35.4.530

37. Leung AYH, Leung JCK, Chan LYY, Ma ESK, Kwan TTF, Lai KN, et al. Proliferating cell nuclear antigen (PCNA) as a proliferative marker during embryonic and adult zebrafish hematopoiesis. Histochem Cell Biol 2005;124(2):105-11. https://doi.org/10.1007/s00418-005-0003-2

38. Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 2011;107(7):1127-40. https://doi.org/10.1093/aob/mcq243

39. Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 2004;165:789-800. https://doi.org/10.1083/jcb.200404092

40. Duffy KT, McAleer MF, Davidson WR, Kari L, Kari C, Liu CG, et al. Coordinate control of cell cycle regulatory genes in zebrafish development tested by cyclin D1 knockdown with morpholino phosphorodiamidates and hydroxyprolyl-phosphono peptide nucleic acids. Nucleic Acids Res 2005;33(15):4914-21. https://doi.org/10.1093/nar/gki799

41. Bertoli C, Skotheim JM, De Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 2013;14(8):518-28. https://doi.org/10.1038/nrm3629

42. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262

43. Gill RJ, Raine NE. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol 2014;28(6):1459-71. https://doi.org/10.1111/1365-2435.12292

44. Pandey S, Kumar R, Sharma S, Nagpure NS, Srivastava SK, Verma MS. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicol Environ Saf 2005;61(1):114-20. https://doi.org/10.1016/j.ecoenv.2004.08.004

45. Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of pollution on fish behavior, personality, and cognition: some research perspectives. Front Ecol Evol 2020;8:86. https://doi.org/10.3389/fevo.2020.00086

46. Yilmaz AD, Coban T, Suzen S. Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J Enzyme Inhib Med Chem 2012;27(3):428-36. https://doi.org/10.3109/14756366.2011.594048

47. Vellonen KS, Honkakoski P, Urtti A. Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. Eur J Pharm Sci 2004;23(2):181-8. https://doi.org/10.1016/j.ejps.2004.07.006

48. Rai Y, Pathak R, Kumari N, Sah DK, Pandey S, Kalra N, et al. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep 2018;8(1):1-15. https://doi.org/10.1038/s41598-018-19930-w

49. Majeed SA, Nambi KSN, Taju G, Vimal S, Venkatesan C, Hameed ASS. Cytotoxicity, genotoxicity and oxidative stress of malachite green on the kidney and gill cell lines of freshwater air breathing fish Channa striata. Environ Sci Pollut Res 2014;21(23):13539-50. https://doi.org/10.1007/s11356-014-3279-8

50. Dezfuli BS, Giari L, Lui A, Squerzanti S, Castaldelli G, Shinn AP, et al. Proliferative cell nuclear antigen (PCNA) expression in the intestine of Salmo trutta trutta naturally infected with an acanthocephalan. Parasites Vectors 2012;5(1):1. https://doi.org/10.1186/1756-3305-5-198

51. Crayton SM, Wood PB, Brown DJ, Millikin AR, McManus TJ, Simpson TJ, et al. Bioaccumulation of the pesticide imidacloprid in stream organisms and sublethal effects on salamanders. Glob Ecol Conserv 2020;24:e01292. https://doi.org/10.1016/j.gecco.2020.e01292

52. Abdel-Halim KY, Osman SR. Cytotoxicity and oxidative stress responses of imidacloprid and glyphosate in human prostate epithelial WPM-Y.1 cell line. J Toxicol 2020. https://doi.org/10.1155/2020/4364650

53. Su F, Zhang S, Li H, Guo H. In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid to gill cell line of flounder Paralichthy olivaceus. Chin J Oceanol Limnol 2007;25(2):209-14. https://doi.org/10.1007/s00343-007-0209-3

54. Ilboudo S, Fouche E, Rizzati V, Toé AM, Gamet-Payrastre L, Guissou PI. In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2. Toxicol Rep 2014;1:474-89. https://doi.org/10.1016/j.toxrep.2014.07.008

55. Zurita JL, Jos Á, Cameán AM, Salguero M, López-Artíguez M, Repetto G. Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines. Chemosphere 2007;67(1):1-12. https://doi.org/10.1016/j.chemosphere.2006.10.027

56. Lovecka P, Thimova M, Grznarova P, Lipov J, Knejzlik Z, Stiborova H, et al. Study of cytotoxic effects of benzonitrile pesticides. BioMed Res Int 2015. https://doi.org/10.1155/2015/381264

57. Cvjetko M, Radoševi? K, Tomica A, Slivac I, Vorkapi?-Fura? J, Gaurina Sr?ek V. Cytotoxic effects of imidazolium ionic liquids on fish and human cell lines. Arhiv Za Higijenu Rada i Toksikologiju 2012;63(1):15-20. https://doi.org/10.2478/10004-1254-63-2012-2132

58. Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003;116(15):3051-60. https://doi.org/10.1242/jcs.00653

59. de Oliveira MG, Lauxen I da S, Chaves ACM, Rados PV, Sant'Ana Filho M. Immunohistochemical analysis of the patterns of p53 and PCNA expression in odontogenic cystic lesions. Med Oral Patol Oral Cir Bucal 2008;13(5):E275-80.

60. El-Bayomy AA, Smoak IW, Branch S. Embryotoxicity of the pesticide mirex in vitro. Teratog Carcinog Mutag 2002;22(4):239-49. https://doi.org/10.1002/tcm.10016

61. Hreljac I, Zajc I, Lah T, Filipic M. Effects of model organophosphorous pesticides on DNA damage and proliferation of HepG2 cells. Environ Mol Mutag 2008;49(5):360-7. https://doi.org/10.1002/em.20392

62. Sanden M, Olsvik PA. Intestinal cellular localization of PCNA protein and CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant. BMC Physiol 2009;9(1):1-11. https://doi.org/10.1186/1472-6793-9-3

63. Mazumder S, DuPree EL, Almasan A. A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets 2004;4(1):65-75. https://doi.org/10.2174/1568009043481669

64. Cunningham JJ, Roussel MF. Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differentiation. 2001 12(8):387-96.

65. Burke K, Cheng Y, Li B, Petrov A, Joshi P, Berman RF, et al. Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. NeuroToxicol 2006;27(6):970-81. https://doi.org/10.1016/j.neuro.2006.09.001

Article Metrics

4 Absract views 0 PDF Downloads 4 Total views

Related Search

By author names


    Warning: Cannot modify header information - headers already sent by (output started at /home/jabonlin/public_html/jab_php/abstract.php:242) in /home/jabonlin/public_html/jab_php/articlemodule/searchArticles.php on line 1162

    Warning: Invalid argument supplied for foreach() in /home/jabonlin/public_html/jab_php/abstract.php on line 819

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379