Evaluation of the biosorption potential of Aspergillus flavus biomass for removal of chromium (VI) from an aqueous solution

Riti Thapar Kapoor   

Open Access   

Published:  Dec 04, 2021

Abstract

Chromium biosorption potential of live and dead biomass of Aspergillus flavus was analyzed by batch experiments under various experimental conditions like pH, adsorbent dose, exposure period, and temperature. Maximum biosorption of hexavalent chromium was observed at pH 3.5 with adsorbent dose 2.5 g at 30°C. Three days were considered as the optimum exposure period for chromium removal for live biomass, whereas 1.3 hours exposure period for dead biomass of A. flavus. The equilibrium data were examined by Langmuir and Freundlich isotherms. Freundlich isotherm appeared to be the best fit model. Phytotoxicity test was conducted to check the effect of the treated chromium solution on the seed germination, seedling length, and vigor index of Vigna radiata. Only 23% germination was reported in chromium metal-treated V. radiata seeds, but germination and growth parameters of mung bean seeds were significantly increased in the chromium solution after treatment with dead and live biomass. The chromium biosorption potential showed the following trend: dead A. flavus > live A. flavus. Hence, live and dead biomass of A. flavus can be applied as a safe and economically feasible biosorbent for hexavalent chromium elimination for the treatment of industrial effluent or wastewater system.


Keyword:     Aspergillus flavus biomass biosorbent chromium


Citation:

Kapoor RT. Evaluation of the biosorption potential of Aspergillus flavus biomass for removal of chromium (VI) from an aqueous solution. J Appl Biol Biotech. Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Ali H, Khan E. What are heavy metals? Long-standing controversy over the scientific use of the term heavy metals proposal of a comprehensive definition. Toxicol Environ Chem 2018;100(1-2):6-19. https://doi.org/10.1080/02772248.2017.1413652

2. Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, et al. Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage 2021;285:112174. https://doi.org/10.1016/j.jenvman.2021.112174

3. Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 2016;569-570:476-88. https://doi.org/10.1016/j.scitotenv.2016.06.166

4. Hong YJ, Liao W, Yan ZF, Bai YC, Feng CL, Xu ZX, et al. Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. Hindawi J Chem 2020;2020:1-12. Article ID 9010348. https://doi.org/10.1155/2020/9010348

5. Schiavon M, Pilon-Smits E, Wirtz M, Hell R, Malagoli M. Interactions between chromium and sulfur metabolism in Brassica juncea. J Environ Qual 2008;37:1536-45. https://doi.org/10.2134/jeq2007.0032

6. Pushkar B, Sevak P, Parab S, Nilkanth N. Chromium pollution and its bioremediation mechanisms in bacteria: a review. J Environ Manage 2021;287:112279. https://doi.org/10.1016/j.jenvman.2021.112279

7. Wakeel A, Xu M, Gan Y. Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural and photosynthetic changes in plants. Int J Mol Sci 2020;21:728. https://doi.org/10.3390/ijms21030728

8. Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, et al. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediat 2017;19:605-13. https://doi.org/10.1080/15226514.2016.1256372

9. Sultana MY, Akratos CS, Pavlou S, Vayenas DV. Chromium removal in constructed wetlands: a review. Int Biodeterior Biodegrad 2014;96:181-90. https://doi.org/10.1016/j.ibiod.2014.08.009

10. Des Marias TL, Costa M. Mechanisms of chromium-induced toxicity. Curr Opinion Toxicol 2019;14:1-7. https://doi.org/10.1016/j.cotox.2019.05.003

11. Desai C, Jain K, Madamwar D. Evaluation of in vitro Cr (VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr (VI) polluted industrial landfill. Biores Technol 2008;99:6059-69. https://doi.org/10.1016/j.biortech.2007.12.046

12. Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium. Chem Res Toxicol 2008;21:28-44. https://doi.org/10.1021/tx700198a

13. Domingo-Relloso A, Grau-Perez M, Galan-Chilet I, Garrido-Martinez MJ, Tormos C, Navas-Acien A, Gomez-Ariza JL, et al. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: the Hortega study. Environ Int 2019;123:171-80. https://doi.org/10.1016/j.envint.2018.11.055

14. Rager JE, Suh M, Chappell GA, Thompson CM, Proctor DM. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis. Toxicol Lett 2019;305:40-50. https://doi.org/10.1016/j.toxlet.2019.01.011

15. Mamatha M, Aravinda HB, Puttaiah ET, Manjappa S. Adsorption of ferrous and ferric ions in aqueous and industrial effluent onto Pongamia pinnata tree bark. Int J Chem Biomol Metall Mater Sci Eng 2012;6(7):49-57.

16. Chauhan J, Yadav VK, Saini I, Jha RK, Tanwar A, Kaushik P. Effect of fungal pretreatment on Solanum nigrum L. leaves biomass aimed at the bioadsorption of heavy metals. Ind J Tradit Knowl 2020a;19(4):832-8.

17. Atkinson BW, Bux F, Kasan HC. Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water S A 1998;24(2):129-35.

18. Chauhan J, Yadav VK, Sahu AP, Jha RK, Kaushik P. Biosorption potential of alkali pretreated fungal biomass for the removal and detoxification of lead metal ions. J Sci Ind Res 2020b;79(07):636-9.

19. Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 2007;98(12):2243-57. https://doi.org/10.1016/j.biortech.2005.12.006

20. Sarma GVS, Rani KS, Chandra KS, Babu BK, Ramesh KV. Potential removal of phenol using modified laterite adsorbent. Ind J Biochem Biophys 2020;57(5):613-9.

21. Saad AM, Moataza MS, Hassan HM, Ibrahim NA, El-Hadedy DE, Ibrahim EI, et al. Optimization study for β-mannanase production from locust bean gum by a local Aspergillus tamarii NRC 3 isolate. Res J Pharm Biol Chem Sci 2016;7(6):2597-609.

22. Mondal NK, Samanta A, Dutta S, Chattoraj S. Optimization of Cr (VI) biosorption onto Aspergillus niger using 3-level Box-Behnken design: equilibrium, kinetic, thermodynamic and regeneration studies. J Genet Eng Biotechnol 2017;15:151-60. https://doi.org/10.1016/j.jgeb.2017.01.006

23. Saad AM. Factors affecting cobalt uptake by cobalt-trained Mucor rouxii NRRL 1894 biomass. Eur J Biotechnol Biosci 2015;3(3):1-6.

24. Clesceri LS, Greenberg AE, Eaton AD. Standard methods for the examination of water and wastewater. 20th edition, American Public Health Association, Washington DC, 1998.

25. Bharathi KS, Ramesh SPT. Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus. Appl Water Sci 2013;3:673-87. https://doi.org/10.1007/s13201-013-0103-4

26. Ng C, Losso JN, Marshall WE, Rao RM. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresour Technol 2002;85:131-5. https://doi.org/10.1016/S0960-8524(02)00093-7

27. ISTA, International rules for seed testing. International Seed Testing Association. ISTA Secretariat, Bassersdorf, Switzerland, 2008.

28. Abdul Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci 1973;13:630-3. https://doi.org/10.2135/cropsci1973.0011183X001300060013x

29. Sugashini S, Begum KMMS. Optimization using central composite design for the biosorption of Cr (VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Techn Environ Policy 2013;15:293-302. https://doi.org/10.1007/s10098-012-0512-3

30. Park D, Yun YS, Jo JH, Park JM. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 2005;39(4):533-40. https://doi.org/10.1016/j.watres.2004.11.002

31. Sarikaya AG. Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environ Technol 2019;42:1-9; https://doi.org/10.1080/09593330.2019.1620867

32. Wakeel A, Ali I, Wu M, Kkan AR, Jan M, Ali A, et al. Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environ Exp Bot 2019;161:166-79. https://doi.org/10.1016/j.envexpbot.2018.09.004

33. Tomko J, Backor MS, Tofko M. Biosorption of heavy metals by dry fungi biomass. Acta Metall Slovaka 2006;12:447-51.

34. Javaid A, Bajwa R, Manzoor T. Biosorption of heavy metals by pretreated biomass of Aspergillus niger. Pak J Bot 2011;43(1):419-25.

35. Rao PR, Bhargavi C. Studies on biosorption of heavy metals using pretreated biomass of fungal species. Int J Chem Chem Eng 2013;3(3):171-80.

36. Mali A, Pandit V, Majumder DR. Biosorption and desorption of zinc and nickel from wastewater by using dead fungal biomass of Aspergillus flavus, Int J Tech Res Appl 2014;2(6):42-6.

37. Sun YM, Horng CY, Chang FL, Cheng LC, Tian WX. Biosorption of lead, mercury and cadmium ions by Aspergillus terreus immobilized in a natural matrix. Pol J Microbiol 2010;59(1):37-44. https://doi.org/10.33073/pjm-2010-005

38. Soleimani N, Mohammadian FM, Ramazani A, Mehrasbi MR. Application of live, dead, and dried biomasses of Aspergillus versicolor for cadmium biotreatment. J Hum Environ Health Promot 2016;1(2):87-98. https://doi.org/10.29252/jhehp.1.2.87

39. Garcia R, Campos J, Cruz JA, Calderón ME, Raynal ME, Buitrón G. Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp. strains isolated from industrial waste activate sludge. TIP Revista Especializada en Ciencias Químico-Biológicas 2016;19(1):5-14. https://doi.org/10.1016/j.recqb.2016.02.001

40. Mahish PK, Tiwari KL, Jadhav SK. Biosorption of lead by biomass of resistant Penicillium oxalicum isolated from industrial effluent. J Appl Sci 2018;18(1):41-7. https://doi.org/10.3923/jas.2018.41.47

41. Garg UK, Kaur MP, Garg VK, Sud D. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 2007;140:60-8. https://doi.org/10.1016/j.jhazmat.2006.06.056

42. Hu X, Cao J, Yang H, Li D, Qiao Y, Zhao J. Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2. PLoS One 2020;15(1):e0226557. https://doi.org/10.1371/journal.pone.0226557

43. Khadivinia E, Sharafi H, Hadi F, Zahiri HS. Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. J Ind Eng Chem 2014;20(6):430-10. https://doi.org/10.1016/j.jiec.2014.01.037

44. Paul ML, Samuel J, Chandrasekaran N, Mukherjee A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biosorbent of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem Eng J 2012;187:104-13. https://doi.org/10.1016/j.cej.2012.01.106

45. Cheng Y, Yang C, He H, Zeng G. Biosorption of Pb (II) ions from aqueous solutions by waste biosorbent from biotrickling filters: kinetics, isotherms, and thermodynamics. J Environ Eng 2015;142(9):C4015001. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000956

46. Yin K, Wang Q, Lv M, Chen L. Microorganism remediation strategies towards heavy metals. Chem Eng J 2018;1553:1563. https://doi.org/10.1016/j.cej.2018.10.226

47. Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M. Biosorption potential of dead and living Arthrobacter viscosus biosorbent in the removal of Cr (VI): batch and column studies. Process Saf Environ Protect 2017;108:44-56. https://doi.org/10.1016/j.psep.2016.06.016

48. Ayele A, Haile S, Alemu D, Kamaraj M. Comparative utilization of dead and live fungal biomass for the removal of heavy metal: a concise review. Sci World J 2021;2021:1-10. Article ID 5588111. https://doi.org/10.1155/2021/5588111

Article Metrics

12 Absract views 0 PDF Downloads 12 Total views

Related Search

By author names


    Warning: Cannot modify header information - headers already sent by (output started at /home/jabonlin/public_html/jab_php/abstract.php:243) in /home/jabonlin/public_html/jab_php/articlemodule/searchArticles.php on line 1162

    Warning: Invalid argument supplied for foreach() in /home/jabonlin/public_html/jab_php/abstract.php on line 819

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379
Similar Articles