Research Article | Volume: 10, Issue: 1, January, 2022

Upsurge production of cellulase from maize stover under soildstate conditions mediated by Streptomyces enissocaesilis DQ026641

Ashok Sudarshan Siddanna Renuka Sirasagar Reshma Bhalerao Shilanjali Dayanand Agsar   

Open Access   

Published:  Jan 07, 2022

DOI: 10.7324/JABB.2021.100117

Maize stover was explored as a sole substrate of carbon for the extra cellular production of cellulase under solid-state conditions by an actinobacterium, Streptomyces enissocaesilis DQ026641. The upsurge production of cellulase was optimized manually regulating important process variables such as substrate (particle size, moisture content), organism (inoculum size), physicochemical attributes (pH, temperature) and mineral salts (NaCl, MgSO4, FeSO4) following one factor at a time approach. The maximum production (71.10 IU/ml) of cellulase was obtained at particle size 2 mm, moisture content 1.25%, temperature 45°C, inoculum size 1 × 108 and NaCl 1.5%. Enhanced production (79 IU/ml) of cellulase was achieved by following Response Surface Methodology with Centre Composite Design, considering pH 6.5, temperature 45°C and sodium chloride 1.5% as critical process variables. The quadratic impact of pH, temperature and sodium chloride significantly contributed for the production of cellulase under solid-state conditions from maize stover mediated by S. enissocaesilis DQ026641.

Keyword:     Maize stover actinobacterium cellulase solid-state conditions and enhanced production


Sudarshan A, Renuka S, Reshma S, Shilanjali B, Agsar D. Upsurge production of cellulase from maize stover under soildstate conditions mediated by Streptomyces enissocaesilis DQ026641. J Appl Biol Biotech. 2022;10(01):136-144.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text


1. Ramasubramani R, Gunasekaran K. Sustainable alternate materials for concrete production from renewable source and waste. Sustainability 2021;13(3):1204;

2. Bajar S, Singh A, Bishnoi NR. Exploration of low-cost agro-industrial waste substrate for cellulase and xylanase production using Aspergillus heteromorphus. Appl Water Sci 2020;10;

3. Sudarshan A, Renuka S, Talwar S, Reshma S, Shilanjali B, Agsar D. Detection, screening and molecular characterization of potential actinobacterium from lime-dwelling powder for extra cellular cellulase. Int J Res Appl Sci Biotechnol 2021;

4. Thiruvengadam S, Subbiah S, Chellapandian B, Arunachalam C, Omaima N, Sulaiman A, et al. Purification and characterization of carboxymethylcellulase from Bacillus pumilus EWBCM1 isolated from earthworm gut (Eudrilus eugeniae) J King Saud Univ Sci 2021;33(1);

5. Kalsoom R, Ahmed S, Nadeem M, Chohan S, Abid M. Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. Int J Environ Sci Technol 2019;16:921-8;6. Mesbah NM, Wiegel JA. Halophilic, alkalithermostable, ionic liquid-tolerant cellulase and its application in in situ saccharification of rice straw. Bioenergy Res 2017;10:583-91;

7. Hideno A. thermogravimetric analysis-based characterization of suitable biomass for alkaline peroxide treatment to obtain cellulose and fermentable sugars. BioResources 2020;15(3):6217-29.

8. Guruchandran V, Sasikumar C. Cellulase production by Aspergillus niger fermented in sawdust and bagasse. J Cell Tissue Res 2010;10:2115-7.

9. Zhao SH, Liang XH, Hua DL, Ma TS, Zhang HB. High yield cellulose production in solid state fermentation by Trichoderma reesei SEMCC-3.217 using water hyacinth (Eichhornia Crassipes). Afr J Biotech 2011;10(50):10178-87.

10. Verma N, Kumar V, Bansal MC. Valorisation of waste biomass in fermentative production of cellulases: a review. Waste Biomass Valor 2021;12:613-40;

11. Verma N, Kumar V. Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa under wheat bran based solid state fermentation. Biotechnol 2020;25:e00416.

12. Dos Santos TC, Gomes DPP, Bonomo RCF. Optimisation of solid-state fermentation of potato peel for the production of cellulolytic enzyme. Food Chem 2012;133:1299-304.

13. Ruchi A, Amit V, Reeta RS, Sunita V, Cheng DD, Anil KP. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour Technol 2021;332;

14. Dasari PR, Ramteke PW, Kesri S, Kongala PR. comparative study of cellulase production using submerged and solid-state fermentation. In: Srivastava M, Srivastava N, Ramteke P, Mishra P (eds.). approaches to enhance industrial production of fungal cellulases. Fungal biology Springer, Cham, Switzerland, 2019;

15. Hatice P, Didem T, Halide A. Production and characterization of lipase from Penicillium aurantiogriseum under solid-state fermentation using sunflower pulp. Biocatal Biotransform 2021;

16. Maurice, N. Role of solid-state fermentation to enhance cellulase production. New and Future Dev Microb Biotechnol Bioeng 2019:127-53;

17. Rocha LM, Campanhol BS, Bastos RG. Solid-state cultivation of Aspergillus niger-Trichoderma reesei from sugarcane bagasse with vinasse in bench packed-bed column bioreactor;

18. Idris ASO, Pandey A, Rao SS, Sukumaran RK. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresour Technol 2017;242:265-71.

19. Yoon LW, Ang TN, Ngoh GC, Chua ASM. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 2014;67:319-38.

20. Sharma M, Kumar BB. Optimization of bioprocess variables for production of a thermostable and wide range pH stable carboxymethyl cellulase from Bacillus subtilis MS 54 under solid state fermentation. Environ Prog Sustain Energy 2017;36:1123-30;

21. Shankar T, Isaiarasu. Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle-East J Sci Res 2011;8(1):40-5.

22. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbial Technol 2010;46:541-49.

23. Miller GL, Use of dinitro salicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426-8.

24. Nkodi MT, Mulaji KC, Mabela MR, Kayembe SJ, Biey ME, Ekoko G, et al. Investigation of factors affecting biogas production from cassava peels by fractional factorial design experimental methodology. J Appl Life Sci Int 2020;23(2):49-56;

25. Sinjaroonsak S, Chaiyaso T, Aran H. Optimization of cellulase and xylanase productions by Streptomyces thermocoprophilus TC13W using low cost pretreated oil palm empty fruit bunch. Waste Biomass Valori 2019;

26. Ratnakomala S. Enhancement of cellulase (CMCase) production from marine actinomycetes Streptomyces sp. Bse 7-9: optimization of fermentation medium by response surface methodology. IOP Conf Ser Earth Environ Sci 2019;251(2019):012005.

27. Abdullah B, Maftukhah S, Listyaningrum E, Faradhiba F. Effect of some variable in cellulase production by Aspergillus niger ITBCC L74 using solid state fermentation. IOP Conf. Ser Mater Sci Eng 2018;316(2018):012066;

28. Marraiki N, Vijayaraghavan P, Elgorban AM, Dhas DSD, Al-Rashed S, Yassina MT. Low-cost feedstock for the production of endoglucanase in solid state fermentation by Trichoderma hamatum NGL1 using response surface methodology and saccharification efficacy. J King Saud Univ Sci 2020;32:1718-24;

29. El-Nahrawy S, Metwally M, El-Kodoos RYA, Belal EB, Shabana SA, El-Refai M. Optimization of culture conditions for production of cellulase by Aspergillus tubingensis KY615746 using rice straw waste. Environ Biodivers Soil Secur 2017;1:177-89.

30. Kshirsagar SD, Saratale GD, Saratale RG, Govindwar SP, Oh MK. An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass. J Appl Microbiol 2016;120(1):112- 25;

31. Kaur B, Bhatia S, Phutela U. Production of cellulases from Humicola fuscoatra MTCC 1409: role of enzymes in paddy straw digestion. Afr J Microb Res 2015;9:631-8. 32. Akurathi R, Thoti D. Biocatalysis of agro-processing waste by marine Streptomyces fungicidicus strain RPBS-A4 for cellulase production. J Appl Biol Biotechnol 2018;6(1):38-42.

33. Stalin T, Priya SB, Selvam K. Ecofriendly application of cellulase and xylanase producing marine Streptomyces clavuligerus as enhancer in biogas production from waste. Afr J Environ Sci Technol 2012;6(6):258-62.

34. El-Hadi AA, El-Nour SA, Hammad A, Kamel Z, Anwar M. Optimization of cultural and nutritional conditions for carboxymethyl cellulase production by Aspergillus hortai. J Radiat Res Appl Sci 2014;7:23-8.

35. Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G. Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saudi Univ Sci 2017;29:302-10.

36. Tai WY, Tan JS, Lim V, Lee CK. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnol Prog 2019:e2781;

37. Maravi P, Kumar A. Optimization and statistical modeling of microbial cellulase production using submerged culture. J App Biol Biotech 2021;9(2):142-52;

38. Ahmad T, Sharma A, Gupta G, Mansoor S, Jan S, Kaur B, et al. Response surface optimization of cellulase production from Aneurinibacillus aneurinilyticus BKT-9: an isolate of urban Himalayan freshwater. Saudi J Biol Sci 2020;27:2333-43.

39. Bao Y, Dolfing J, Guo Z, Chen R, Wu M, Li Z, et al. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 2021;9(1):84;

40. Jayasekara S, Ratnayake R. Microbial cellulases: an overview and applications. Cellulose 2019;

41. Passos D. de F, Pereira N, Castro A M de. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr Opin Green Sustainable Chem 2018;14:60-6;

42. Bettache A, Zahra A, Boucherba N, Bouiche C, Hamma S, Maibeche R, et al. Lignocellulosic biomass and cellulolytic enzymes of actinobacteria. SAJ Biotechnol 2018;5:203.

43. Hamed MB, Anne J, Karamanou S, Economou A. Streptomyces protein secretion and its application in biotechnology. FEMS Microbiol Lett 2018;365(22);

Article Metrics

1 Absract views 7 PDF Downloads 8 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379