Research Article | Volume: 10, Issue: 1, January, 2022

Study of in vitro activity on glucose uptake of 3T3L1 cells, RIN5f cells, and glycemic index stimulation inhibitory effect of Abutilon indicum (L.) extract

L. Lavanya V. Veeraraghavan Renuka Srihari C. N. Prashantha   

Open Access   

Published:  Jan 07, 2022

DOI: 10.7324/JABB.2021.100118
Abstract

Abutilon indicum (L.) is one of the traditional medicinal plants and its extract has been utilized for antidiabetic activity. Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and its occurrence is increasing fast in most countries. Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in adipogenesis. The present study determines the effect of A. indicum methanolic leaf extract as potential antidiabetic inhibitors. The in vitro analysis was carried out by using 3T3L1 for glucose uptake assay, RIN5F cell lines for insulin secretion, hydrolysis assay to predict glycemic index, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay, and molecular interaction of the known bioactive compounds with PPARγ. The experimental results showed 100 nM insulin and 50 mM LiCl glucose uptake with 3.37 and 3.86 fold stimulation, respectively, when compared to the control, whereas the given samples of 200, 400, and 800 μg/ml showed 1.37, 1.62, and 1.85 μg/ml fold stimulation, respectively, when compared to the control. The insulin release in RIN-5f cells was observed with a positive control and crude extract and the results showed 4.67 and 2.67 μg/ml, respectively. The hydrolysis index value was found to be 53.30 and the glycemic load was 17.48 μg/ml. In the DPPH assay, the sample showed dose-dependent DPPH radical scavenging activity with an IC50 value of 99.12 μg/ml when compared to standard quercetin with an IC50 value of 1.7 μg/ml. The molecular interaction of PPARγ and active methyl trans-p-coumarate (−5.44) > methyl caffeate (−4.49) > syringic acid (−3.9) > pinellic acid (−2.62) compared with thiazolidinediones (−7.62) formed a novel type of oral antidiabetic medication that improved metabolic management in type 2 diabetic patients by increasing insulin sensitivity. The overall result shows that A. indicum (L.) is a potential indicator for sensitizing insulin secretion and strongly inhibits the release of glucagon which can be used as a therapeutic agent for treating and managing diabetes.


Keyword:     A. indicum (L.) diabetes mellitus glucose uptake of 3T3L1 cell glycemic index RIN5f cells


Citation:

Lavanya L, Veeraraghavan V, Renuka S, Prashantha CN. Study of in vitro activity on glucose uptake of 3T3L-1 cells, RIN5f cells, and glycemic index stimulation inhibitory effect of Abutilon indicum (L.) extract. J Appl Biol Biotech. 2022;10(01):145-156.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008;88(11):1322-35. https://doi.org/10.2522/ptj.20080008

2. Li S, Wang J, Zhang B, Li X, Liu Y. Diabetes mellitus and cause-specific mortality: a population-based study. Diabetes Metab J 2019;43(3):319-41. https://doi.org/10.4093/dmj.2018.0060

3. Harris-Hayes M, Schootman M, Schootman JC, Hastings MK. The role of physical therapists in fighting the type 2 diabetes epidemic. J Orthop Sports Phys Ther 2020;50(1):5-16; https://doi.org/10.2519/jospt.2020.9154

4. El-Hawary SS, Mohammed R, El-Din ME, Hassan HM, Ali ZY, Rateb ME, et al. Comparative phytochemical analysis of five Egyptian strawberry cultivars (Fragaria X ananassa Duch.) and antidiabetic potential of festival and red merlin cultivars. RSC Adv 2021;11:16755; https://doi.org/10.1039/D0RA10748D

5. Smith JD, Hou T, Ludwig DS, Rimm EB, Willett W, Hu FB, et al. Changes in intake of protein foods, carbohydrate amount 56, 35-46. and quality, and long-term weight change: results from 3 prospective cohorts. Am J Clin Nutr 2015;101(6):1216-24. https://doi.org/10.3945/ajcn.114.100867

5. Wasana KGP, Attanayake AP, Jayatilaka KAPW, Weerarathna TP. Antidiabetic activity of widely used medicinal plants in the Sri Lankan traditional healthcare system: new insight to medicinal flora in Sri Lanka. Evid Based Complement Alternat Med 2021;2021(12):Article ID 6644004; https://doi.org/10.1155/2021/6644004

6. Suresh Y, Rajasekar G, Lavanya T, Lakshminarsimhulu B, Reddy KS, Reddy SR. Antioxidant and antidiabetic properties of isolated fractions from methanolic extract derived from the whole plant of Cleome viscosa L. Future J Pharm Sci 2020;6:103 https://doi.org/10.1186/s43094-020-00122-1

7. Idakwoji PA, Joshua PE, Asomadu RO, Njoku OU, Nwodo OFC. Antidiabetic activity, phytochemical and proximate compositions of different extracts of Tephrosia bracteolata leaves. Asian J Plant Sci 2021;20:291-9. Available via https://scialert.net/abstract/?doi=ajps.2021.291.299 https://doi.org/10.3923/ajps.2021.291.299

8. Lee J, Noh S, Lim S, Kim B. plant extracts for type 2 diabetes: from traditional medicine to modern drug discovery. Antioxidants 2021;10:81. https://doi.org/10.3390/antiox10010081

9. Lopez AD, Mathers CD. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann Trop Med Parasitol 2006;100(5-6):481-99. https://doi.org/10.1179/136485906X97417

10. Prasad LV. Traditional medicine in Asia. In: Chaudhury RR, Rafei UM (eds.). Indian system of medicine and homoeopathy, WHO- Regional Office for South East Asia, New Delhi, India, pp 283-286, 2002.

11. Roglic G. WHO global report on diabetes: a summary. Int J Non- Commun Dis 2016;1:3-8. Available via https://www.ijncd.org/text.asp?2016/1/1/3/184853 https://doi.org/10.4103/2468-8827.184853

12. Krishnamoorthy K, Subramaniam P. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int Scholarly Res Notices 2014;2014:13; https://doi.org/10.1155/2014/567409

13. Vivekraj P, Vinotha S, Vijayan A, Gideon VA. Preliminary phytochemical screening and GC-MS analysis of methanolic extract of Turnera subulata Smith (Passifloraceae). J Phytopharmacol 2017;6(2):174-7. https://doi.org/10.31254/phyto.2017.6305

14. Rukshana MS, Doss A, Kumari PR. Phytochemical screening and GC-MS analysis of leaf extract of Pergularia daemia (Forssk) Chiov. Asian J Plant Sci Res 2017;7(1):9-15.

15. Ramana Murty Kadali SLDV, Das MC, Vijayaraghavan R, Shanmukha I. In vitro evaluation of antidiabetic activity of aqueous and ethanolic leaves extracts of Chloroxylon swietenia. Natl J Physiol Pharm Pharmacol 2017;7(5):486-90. https://doi.org/10.5455/njppp.2017.7.1235104012017

16. Shettar AK, Vedamurthy AB. Studies on in vitro antidiabetic activities of Hopea ponga and Vitex leucoxylon. Int J Pharm Pharm Sci 2017;9(2):263-67. https://doi.org/10.22159/ijpps.2017v9i2.16280

17. Kong M, Xie K, Lv M, Li J, Yao J, Yan K, et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: lessons learned and future promise. Biomed Pharmacother 2021;133:110975; https://doi.org/10.1016/j.biopha.2020.110975

18. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. 9th edition. Diabetes Res Clin Pract 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843

19. Rahman S, Jan G, Jan FG, Rahim HU. Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant effects of Leptopus cordifolius decne. In Diabetic Mice. Front Pharmacol 2021;12:643242; . https://doi.org/10.3389/fphar.2021.643242

20. Sapkota BK, Khadayat K, Adhikari B, Poudel DK, Niraula P, Budhathoki P, et al. Phytochemical analysis, antidiabetic potential and in-silico evaluation of some medicinal plants. Pharmacogn Res 2021;13(4). Available via http://www.phcogres.com/article/2021/13/4/105530pres134x-3 https://doi.org/10.5530/pres.13.3.6

21. Abdul MM, Sarker AA, Saiful IM, Muniruddin A. Cytotoxic and antimicrobial activity of the crude extract of Abutilon indicum. Int J Pharmacogn Phytochem Res 2010;(2)1:1-4.

22. Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021;48(1):743-61; https://doi.org/10.1007/s11033-020-06036-8

23. Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: insights from preclinical studies. Phytother Res 2021. https://doi.org/10.1002/ptr.7205

24. Idowu JS, Maryna VDV, Trevor K, Graeme B. In Vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid Based Complement Alternat Med 2018;13:Article ID 4170372. https://doi.org/10.1155/2018/4170372

25. Alessi DR, Downes CP. The role of PI 3-kinase in insulin action. Biochimic Biophys Acta 1998; 436(1-2):151-64. https://doi.org/10.1016/S0005-2760(98)00133-7

26. Khazaei M, Pazhouhi M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicty of streptozotocin. Res Pharm Sci 2018;13(4):324-31; https://doi.org/10.4103/1735-5362.235159

27. Ononamadu CJ, Alhassan AJ, Imam AA, Ibrahim A, Ihegboro GO, et al. In vitro and in vivo anti-diabetic and anti-oxidant activities of methanolic leaf extracts of Ocimum canum. Caspian J Intern Med 2019;10(2):162-75;

28. Park C, Pagnini F, Langer, E. Glucose metabolism responds to perceived sugar intake more than actual sugar intake. Sci Rep 2020;10:15633; https://doi.org/10.1038/s41598-020-72501-w

29. Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 1996;9:1-5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6

30. Khan RS, Senthi M, Rao PC, Basha A, Alvala M, Tummuri D, et al. Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells. Nat Prod Res 2014;29:11; https://doi.org/10.1080/14786419.2014.976643

31. Tamori Y, Masugi J, Nishino N, Kasuga M. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 2002;51(7):2045-55; https://doi.org/10.2337/diabetes.51.7.2045

32. Subash-Babu P, Ignacimuthu S, Alshatwi AA. Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4- mediated insulin sensitization in type 2 diabetic rat liver. Chem Biol Interact 2015;226:72-81; https://doi.org/10.1016/j.cbi.2014.12.011

33. Alshatwi AA, Subash-Babu P. Aloe-emodin protects RIN-5F (pancreatic β-cell) cell from glucotoxicity via regulation of pro-inflammatory cytokine and downregulation of bax and caspase 3. Biomol Ther 2016;24(1):49-56; https://doi.org/10.4062/biomolther.2015.056

34. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981;34(3):362-6. https://doi.org/10.1093/ajcn/34.3.362

35. Gabrielli M, Romero DG, Martini CN, Raiger Iustman LJ, Vila MDC. MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes. Mol Cell Biochem 2018;448(1-2):299- 309; https://doi.org/10.1007/s11010-018-3334-8

36. Kim SH, Shin EJ, Kim ED, Bayaraa T, Frost SC, Hyun CK. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull 2007;30(11):2120-5; https://doi.org/10.1248/bpb.30.2120

37. Greenfield JR, Chisholm DJ, Endocrinology DO. Thiazolidinediones - mechanisms of action. Aust Prescr 2004;27:67-70; https://doi.org/10.18773/austprescr.2004.059

38. Steenkamp G, Delport L. The South African glycemic index and load guide. 4th edition, 2005.

39. Ida, Y., Watanabe, M., Ohguro, H., & Hikage, F. (2021). Simultaneous Use of ROCK Inhibitors and EP2 Agonists Induces Unexpected Effects on Adipogenesis and the Physical Properties of 3T3-L1 Preadipocytes. Int J Mol Sci 2021;22(9):4648. https://doi.org/10.3390/ijms22094648

40. Chawla R, Madhu SV, Makkar BM, Ghosh S, Saboo B, Kalra S. RSSDI-ESI clinical practice recommendations for the management of type 2 diabetes mellitus. Indian J Endocrinol Metab 2020;24(4):376. https://doi.org/10.4103/2230-8210.293612

41. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 2005;97(3):497-501. https://doi.org/10.1016/j.jep.2004.12.010

42. Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res 2018; 23(7):886-904. https://doi.org/10.1161/CIRCRESAHA.118.312806

43. Nawaz A, Hasham MA, Rizvi A, Iftikhar M, Butt AM, Minhas K. Knowledge of insulin practices in adult diabetic patients: a crosssectional survey-based study in a specialized diabetic center of a Tertiary Care Hospital. Endocrinol Diabetes Res 2021;7:5. Available via https://www.scitechnol.com/peer-review/sentiments-about-the-environment-fMCo.pdf

44. Shepherd PR, Kahn BB. Glucose transporters and insulin action-- implications for insulin resistance and diabetes mellitus. N Engl J Med 1999;341(4):248-57. https://doi.org/10.1056/NEJM199907223410406

45. Sasaki-Suzuki N, Arai K, Ogata T, Kasahara K, Sakoda H. et al. Growth hormone inhibition of glucose uptake in adipocytes occurs without affecting GLUT4 translocation through an insulin receptor substrate-2-phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 2009;284(10):6061-70. https://doi.org/10.1074/jbc.M808282200

46. Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch - Eur J Physiol 2020;472:1273-1298; https://doi.org/10.1007/s00424-020-02417-x

47. Leney SE, Tavare JM. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol 2009;203:1-18; https://doi.org/10.1677/JOE-09-0037

48. Lizák B, Szarka A, Kim Y, Choi KS, Németh CE, Marcolongo P, et al. Glucose transport and transporters in the endomembranes. J Mol Sci 2019;20(23):5898; https://doi.org/10.3390/ijms20235898

49. Pereira MJ, Palming J, Rizell M, Aureliano M, Carvalho E, Svensson MK, et al. mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol 2012;355(1):96-105. https://doi.org/10.1016/j.mce.2012.01.024

50. Parveen A, Sultana R, Lee SM, Kim TH, Kim SY. Phytochemicals against anti-diabetic complications: targeting the advanced glycation end product signaling pathway. Arch Pharm Res 2021;44:378-401. https://doi.org/10.1007/s12272-021-01323-9

51. Juanola-Falgarona M, Salas-Salvado J, Ibarrola-Jurado N, Rabassa- Soler A, Diaz-Lopez A, Guasch-Ferre M, et al. Effect of the glycemic index of the diet on weight loss, modulation of satiety, inflammation, and other metabolic risk factors: a randomized controlled trial. Am J Clin Nutr 2014;100(1):27-35. https://doi.org/10.3945/ajcn.113.081216

52. Esfahani A, Wong JM, Mirrahimi A, Villa CR, Kendall C W. The application of the glycemic index and glycemic load in weight loss: a review of the clinical evidence. IUBMB Life 2011;63(1):7-13. https://doi.org/10.1002/iub.418

53. Nayak B, Berrios JD, Tang J. Impact of food processing on the glycemic index (GI) of potato products. Food Res Int 2014;56:35-46. https://doi.org/10.1016/j.foodres.2013.12.020

54. Wu X, Dhanasekaran S. Protective effect of leaf extract of Abutilon indicum on DNA damage and peripheral blood lymphocytes in combating the oxidative stress. Saudi Pharm J 2020;28(8):943-50; https://doi.org/10.1016/j.jsps.2020.06.015

55. Khalivulla SI, Mohammed A, Mallikarjuna K. novel phytochemical constituents and their potential to manage diabetes. Curr Pharm Des 2021;27(6):775-88. Available via https://pubmed.ncbi.nlm.nih. gov/33355047 https://doi.org/10.2174/1381612826666201222154159

Article Metrics

3 Absract views 10 PDF Downloads 13 Total views

Related Search

By author names


    Warning: Cannot modify header information - headers already sent by (output started at /home/jabonlin/public_html/jab_php/abstract.php:243) in /home/jabonlin/public_html/jab_php/articlemodule/searchArticles.php on line 1162
    Lavanya L [PubMed] [Google Scholar ]
    Veeraraghavan V [PubMed] [Google Scholar ]
    Srihari R [PubMed] [Google Scholar ]
    Prashantha C N [PubMed] [Google Scholar ]

    Warning: Invalid argument supplied for foreach() in /home/jabonlin/public_html/jab_php/abstract.php on line 819

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379