Research Article | Volume: 10, Issue: 1, January, 2022

Antioxidative, antiproliferative, and apoptosis effect of Coleus tuberosus flesh and peel ethanol extracts on cervical cancer cell lines

Mutiara Nugraheni Windarwati Windarwati Badraningsih Lastariwati   

Open Access   

Published:  Jan 07, 2022

DOI: 10.7324/JABB.2021.100120
Abstract

The purpose of this study is to determine the antioxidant activity, antiproliferation, apoptosis, and cell cycle arrest induced by Coleus tuberosus flesh and peel extracted with ethanol. The antioxidant activity was determined using the 1,1-diphenylpricrylhydrazyl and cellular antioxidant assays, and the antiproliferative activity was determined using the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was used to assess cell cycle arrest, and acridine orange-ethidium bromide staining was used to assess apoptosis-induced ability. The results show that the C. tuberosus peel extract has higher antioxidant activity than the flesh extract. Coleus tuberosus flesh ethanol extract (CFEE) and C. tuberosus peel ethanol extracts’ (CPEE) antioxidant activities inhibitory concentration 50 (IC50) were 1290.00±1.58g/ml and 310.97±0.32μg/ ml, respectively. The C. tuberosus peel extract has greater antiproliferative activity than the flesh extract. The C. tuberosus flesh and peel extracts had antiproliferative activities (IC50) of 651.35±4.24 and 366.41±3.52μg/ml, respectively. The flesh and peel extracts cause apoptosis in HeLa cells. Cell cycle arrest in sub-G1 (M) and cell cycle inhibition in G0-G1 are caused by the C. tuberosus peel extract. According to this study, the CFEE and CPEEs have the potential to be a source of natural antioxidants and antiproliferation of cervical cancer.


Keyword:     Coleus tuberosus antioxidant cellular apoptosis cell cycle arrest


Citation:

Nugraheni M, Windarwati W, Lastariwati B. Antioxidative, antiproliferative, and apoptotic effect of Coleus tuberosus flesh and peel ethanol extract on cervical cancer cell lines. J Appl Biol Biotech. 2022;10(01):164-171.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Krstic M, Stojadinovic M, Smiljanic K, Stanic-Vucinic D, Velickovic TC. The anti-cancer activity of green tea, coffee and cocoa extracts on human cervical adenocarcinoma HeLa cells depends on both pro-oxidant and anti-proliferative activities of polyphenols. RSC Adv 2015;5(5):3260-8. https://doi.org/10.1039/C4RA13230K

2. RI K. Hari Kanker Sedunia 2019. Kementerian Kesehatan Republik Indonesia, Jakarta, Indonesia, 2019.

3. Imre M, Csed?, K. 2007. Chemical differences and simi-larities in the family Lamiaceae. Revista de Medicina si Farmacie 53: 1-14.

4. Hsum YW, Yew WT, Hong PLV, Soo KK, Hoon LS, Chieng YC, et al. Identificaton and evaluation of potential anti-tumor promoting compounds from tubers of Coleus tuberosus. In International Symposium on Natural Products in Cancer Therapy, Naples, Italy, pp 23-6, 2008.

5. Ali AM, Mooi LY, Yih KY, Norhanom AW, Saleh K, Lajis NH, et al. Anti-tumor promoting activity of some malaysian traditional vegetable (ulam) extracts by immunoblotting analysis of Raji cells. Nat Prod Sci 2000;6(3):147-50.

6. Nugraheni M, Santoso U, Wuryastuti H. Potential of Coleus tuberosus as an antioxidant and cancer chemoprevention agent. Int Food Res J 2011;18(4):147-80.

7. Mooi LY, Wahab NA, Lajis NH, Ali AM. Chemopreventive properties of phytosterols and maslinic acid extracted from Coleus tuberosus in inhibiting the expression of EBV early-antigen in Raji cells. Chem Biodivers 2010;7(5):1267-75. https://doi.org/10.1002/cbdv.200900193

8. Chouaïb K, Romdhane A, Delemasure S, Dutartre P, Elie N, Touboul D. Regiospecific synthesis, anti-inflammatory and anticancer evaluation of novel 3, 5-disubstituted isoxazoles from the natural maslinic and oleanolic acids. Ind Crops Prod 2016;85:287-99. https://doi.org/10.1016/j.indcrop.2016.03.024

9. CC. Ursolic acid and other pentacyclic triterpenoids: anticancer activities and occurrence in berries. In: Berries and cancer prevention. Springer. Editor: Stoner GD, Seeram NP. Springer Science+Business Media, LLC, New York, NY 2011: 41-9. https://doi.org/10.1007/978-1-4419-7554-6_2

10. Juan ME, Planas JM, Ruiz-Gutierrez V, Daniel H, Wenzel U. Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. Br J Nutr 2008;100(1):36-43. https://doi.org/10.1017/S0007114508882979

11. Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic- Grujicic S, et al. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem 2013;136(1):120-9. https://doi.org/10.1016/j.foodchem.2012.07.091

12. Gupta RK, Patel AK, Shah N, Choudhary AK, Jha UK, Yadav UC, et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 2014;15(11):4405-9. https://doi.org/10.7314/APJCP.2014.15.11.4405

13. Silva GÁF, Nunes RAL, Morale MG, Boccardo E, Aguayo F, Termini L. Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics 2018;73:e548s. https://doi.org/10.6061/clinics/2018/e548s

14. Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Investigation of ethyl acetate extract/fractions of Acacia nilotica Willd. Ex Del as potent antioxidant. Rec Nat Prod 2009;3(3):131.

15. Wolfe KL, Liu RH. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Agric Food Chem [Internet] 2007;55(22):8896-907. https://doi.org/10.1021/jf0715166

16. Liu RH, Finley J. Potential cell culture models for antioxidant research. J Agric Food Chem 2005;53(10):4311-4. https://doi.org/10.1021/jf058070i

17. Muanda FN, Bouayed J, Djilani A, Yao C, Soulimani R, Dicko A. Chemical composition and, cellular evaluation of the antioxidant activity of Desmodium adscendens leaves. Evid Based Complement Altern Med 2010;2011:620862. https://doi.org/10.1155/2011/620862

18. Hogan S, Chung H, Zhang L, Li J, Lee Y, Dai Y, et al. Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem 2010;118(2):208-14. https://doi.org/10.1016/j.foodchem.2009.04.099

19. Meiyanto E, Agustina D, Suparjan AM, Da IM. PVG-O induces apoptosis on T47D breast cancer cells line through caspase-3 activation. J Kedokt Yars 2007;15(2):75-9.

20. Cho JH, Lee JG, Yang YI, Kim JH, Ahn JH, Baek NI, et al. Eupatilin, a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells. Food Chem Toxicol 2011;49(8):1737-44. https://doi.org/10.1016/j.fct.2011.04.019

21. Nugraheni M, Santoso U. Antioxidant activity and resistant starch content of C. tuberosus on different cooking method and its potential on glucose management in diabetic mice. Curr Res Nutr Food Sci J 2019;7(1):182-9. https://doi.org/10.12944/CRNFSJ.7.1.18

22. Nugraheni M, Santoso U, Wuryastuti H. Phytochemical compounds and antioxidant activity of Coleus tuberosus flesh and peel on different solvent. Food Res 2018;2(5):460-7. https://doi.org/10.26656/fr.2017.2(5).098

23. Santiago LA, Dayrit KC, Correa PCB, Mayor ABR. Comparison of antioxidant and free radical scavenging activity of triterpenes αamyrin, oleanolic acid and ursolic acid. J Nat Prod 2014;7:29-36.

24. Dai Y, Qiu XY, He YY, Zhang Q, Yang LG, Gao YT. Effects of scavenging DPPH free radical by oleanocic acid and ursolic acid. J Yunnan Univ Natl (Natural Sci Ed) 2012; 21:395-398.

25. Nur NM, Al-Jasabi SM. Antioxidant properties of maslinic acid extracted from Plumeria Rubra leaves. Int J Contemp Res Rev 2017;8(7):78-83. https://doi.org/10.15520/ijcrr/2017/8/07/160

26. Jamkhande PG, Pathan SK, Wadher SJ. In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids. Int J Mycobacteriol 2016;5(4):417-25. https://doi.org/10.1016/j.ijmyco.2016.06.020

27. Parvez MK, Alam P, Arbab AH, Al-Dosari MS, Alhowiriny TA, Alqasoumi SI. Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J 2018;26(5):685-93. https://doi.org/10.1016/j.jsps.2018.02.022

28. Agatonovic-Kustrin S, Morton DW, Mizaton HH, Zakaria H. The relationship between major polyphenolic acids and stigmasterol to antioxidant activity in different extracts of Myrmecodia platytyrea. South Afri J Bot 2018;115:94-9. https://doi.org/10.1016/j.sajb.2017.12.011

29. Zhang L, Zhang T, Chang M, Lu M, Liu R, Jin Q, et al. Effects of interaction between α-tocopherol, oryzanol, and phytosterol on the antiradical activity against DPPH radical. LWT 2019;112:108206. https://doi.org/10.1016/j.lwt.2019.05.104

30. Prades J, Vögler O, Alemany R, Gomez-Florit M, Funari SS, Ruiz- Gutiérrez V, et al. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties. Biochim Biophys Acta Biomembr 2011;1808(3):752-60. https://doi.org/10.1016/j.bbamem.2010.12.007

31. Zhao CR, Qu XJ. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol 2010;34(5):523-33. https://doi.org/10.1016/j.canep.2010.06.012

32. Loboda A, Rojczyk-Golebiewska E, Bednarczyk-Cwynar B, Lucjusz Z, Jozkowicz A, Dulak J. Targeting Nrf2-mediated gene transcription by triterpenoids and their derivatives. Biomol Ther (Seoul) 2012;20(6):499. https://doi.org/10.4062/biomolther.2012.20.6.499

33. Allouche Y, Warleta F, Campos M, Sanchez-Quesada C, Uceda M, Beltran G, et al. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. J Agric Food Chem 2011;59(1):121-30. https://doi.org/10.1021/jf102319y

34. Mkhwanazi BN, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT. Antioxidant effects of maslinic acid in livers, hearts and kidneys of streptozotocin-induced diabetic rats: effects on kidney function. Ren Fail 2014;36(3):419-31. https://doi.org/10.3109/0886022X.2013.867799

35. Castellano JM, Garcia-Rodriguez S, Espinosa JM, Millan-Linares MC, Rada M, Perona JS. Oleanolic acid exerts a neuroprotective effect against microglial cell activation by modulating cytokine release and antioxidant defense systems. Biomolecules 2019;9(11):683. https://doi.org/10.3390/biom9110683

36. Yin R, Li T, Tian JX, Xi P, Liu RH. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit Rev Food Sci Nutr 2018;58(4):568-74. https://doi.org/10.1080/10408398.2016.1203755

37. Cilla A, Attanzio A, Barberá R, Tesoriere L, Livrea MA. Anti-proliferative effect of main dietary phytosterols and β-cryptoxanthin alone or combined in human colon cancer Caco-2 cells through cytosolic Ca+ 2-and oxidative stress-induced apoptosis. J Funct Foods 2015;12:282-93. https://doi.org/10.1016/j.jff.2014.12.001

38. Oprean C, Mioc M, Csányi E, Ambrus R, Bojin F, Tatu C, et al. Improvement of ursolic and oleanolic acids' antitumor activity by complexation with hydrophilic cyclodextrins. Biomed Pharmacother 2016;83:1095-104. https://doi.org/10.1016/j.biopha.2016.08.030

39. Urias-Lugo DA, Heredia JB, Muy-Rangel MD, Valdez-Torres JB, Serna-Saldívar SO, Gutiérrez-Uribe JA. Anthocyanins and phenolic acids of hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer cells. Plant Foods Hum Nutr 2015;70(2):193-9. https://doi.org/10.1007/s11130-015-0479-4

40. Yadav D, Nath Mishra B, Khan F. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. J Biomol Struct Dyn 2019;37(14):3822-37. https://doi.org/10.1080/07391102.2018.1528888

41. Carneiro NVQ, Silva HBFDA, Silva RR, Carneiro TCB, Costa RS, Pires AO, et al. Sambucus australis modulates inflammatory response via inhibition of nuclear factor kappa B (NF-kB) in vitro. An Acad Bras Cienc 2019;91(1):1-12. https://doi.org/10.1590/0001-3765201920170831

42. Hsum YW, Yew WT, Hong PLV, Soo KK, Hoon LS, Chieng YC, et al. Cancer chemopreventive activity of maslinic acid: suppression of COX-2 expression and inhibition of NF-κB and AP-1 activation in Raji cells. Planta Med 2011;77(02):152-7. https://doi.org/10.1055/s-0030-1250203

43. Zhao H, Liu J, Song L, Liu Z, Han G, Yuan D, et al. Oleanolic acid rejuvenates testicular function through attenuating germ cell DNA damage and apoptosis via deactivation of NF-κB, p53 and p38 signalling pathways. J Pharm Pharmacol 2017;69(3):295-304. https://doi.org/10.1111/jphp.12668

44. Li C, Yang Z, Zhai C, Qiu W, Li D, Yi Z, et al. Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor α by inhibiting NF-κB signaling pathway. Mol Cancer 2010;9(1):1-13. https://doi.org/10.1186/1476-4598-9-73

45. Yu Y, Wang J, Xia N, Li B, Jiang X. Maslinic acid potentiates the antitumor activities of gemcitabine in vitro and in vivo by inhibiting NF-κB-mediated survival signaling pathways in human gallbladder cancer cells. Oncol Rep 2015;33(4):1683-90. https://doi.org/10.3892/or.2015.3755

46. Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A, et al. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res 2012;18(18):4942-53. https://doi.org/10.1158/1078-0432.CCR-11-2805

47. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Kanwal S, Ali B, et al. Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomed Pharmacother 2018;108:752-6. https://doi.org/10.1016/j.biopha.2018.09.096

48. Vundru SS, Kale RK, Singh RP. β-Sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells. BMC Complement Altern Med 2013;13(1):1-9. https://doi.org/10.1186/1472-6882-13-280

49. Ho K, Yazan LS, Ismail N, Ismail M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol 2009;33(2):155-60. https://doi.org/10.1016/j.canep.2009.06.003

50. Attari F, Sepehri H, Delphi L, Goliaei B. Apoptotic and necrotic effects of pectic acid on rat pituitary GH3/B6 tumor cells. Iran Biomed J 2009;13(4):229-36.

51. Jeune MAL, Kumi-Diaka J, Brown J. Anticancer activities of pomegranate extracts and genistein in human breast cancer cells. J Med Food 2005;8(4):469-75. https://doi.org/10.1089/jmf.2005.8.469

52. Zhu Y, Huang H, Wu Y. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol Med Rep 2015;12(4):5012-8. https://doi.org/10.3892/mmr.2015.4033

53. Samivel R, Nagarajan RP, Subramanian U, Khan AA, Masmali A, AlmubradT, et al. Inhibitory effect of ursolic acid on ultraviolet b radiation-induced oxidative stress and proinflammatory response-mediated senescence in human skin dermal fibroblasts. Oxid Med Cell Longev 2020; Article ID 1246510:1-17. https://doi.org/10.1155/2020/1246510

54. Wu DM, Zhao D, Li DZ, Xu DY, Chu WF, Wang XF. Maslinic acid induces apoptosis in salivary gland adenoid cystic carcinoma cells by Ca 2+-evoked p38 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2011;383(3):321-30. https://doi.org/10.1007/s00210-011-0598-x

55. Maiyoa F, Moodley R, Singh M. Phytochemistry, cytotoxicity and apoptosis studies of β-sitosterol-3-oglucoside and β-amyrin from Prunus africana. Afr J Tradit Complement Altern Med 2016;13(4):105-12. https://doi.org/10.21010/ajtcam.v13i4.15

56. Zhang FH, Yan YL, Wang Y, Liu Z. Lactucin induces potent anti-cancer effects in HL-60 human leukemia cancer cells by inducing apoptosis and sub-G1 cell cycle arrest. Bangladesh J Pharmacol 2016;11(2):478-84. https://doi.org/10.3329/bjp.v11i2.26729

57. Long H, Huang Q, Yu Y, Zhang Z, Yao Z, Chen H, et al. Dehydrocostus lactone inhibits in vitro gastrinoma cancer cell growth through apoptosis induction, sub-G1 cell cycle arrest, DNA damage and loss of mitochondrial membrane potential. Arch Med Sci 2019;15(3):765-3. https://doi.org/10.5114/aoms.2018.73128

Article Metrics

16 Absract views 7 PDF Downloads 23 Total views

Related Search

By author names


    Warning: Cannot modify header information - headers already sent by (output started at /home/jabonlin/public_html/jab_php/abstract.php:245) in /home/jabonlin/public_html/jab_php/articlemodule/searchArticles.php on line 1162
    Nugraheni M [PubMed] [Google Scholar ]
    Windarwati W [PubMed] [Google Scholar ]
    Lastariwati B [PubMed] [Google Scholar ]

    Warning: Invalid argument supplied for foreach() in /home/jabonlin/public_html/jab_php/abstract.php on line 819

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379