Research Article | Volume: 10, Issue: 1, January, 2022

Optimization of amylase and protease production from oyster mushrooms koji (Pleurotus spp.) using response surface methodology

Nguyen Thi Ngoc Giang Tran Van Khai Nguyen Minh Thuy   

Open Access   

Published:  Jan 07, 2022

DOI: 10.7324/JABB.2021.100107
Abstract

Koji is a term that describes the process of molds growing and producing enzymes that hydrolyze complex components in cooked materials into simpler compounds. In this study, the optimal conditions for the production of enzymes (amylase and protease) of koji incubation were determined by using the response surface methodology with the central composite design 22 + star. The experiments were conducted with two factors, including molds addition (X1) (0.02 ÷ 0.04%) and koji-making time (X2) (24 ÷ 36 hours), as well as incubation temperature (X3) (27 ÷ 33°C) and pH of koji (X4) (5.5 ÷ 6.5). The study results showed that the mycelium of Aspergillus oryzae developed a fairly thick layer on the medium at 0.030 ÷ 0.044% of molds addition and 30 ÷ 36 hours with pH 5.89 ÷ 6.12 and temperature 29.76 ÷ 30.24°C. The optimal conditions (molds addition, time, pH, and temperature) were 0.03%, 30 hours, pH 6.0, and 30°C, respectively. In these optimal parameters, amylase and protease activities were 61.35 and 12.27 U/g dry matter, respectively.


Keyword:     Amylase Aspergillus oryzae koji oyster mushrooms protease


Citation:

Giang NTN, Khai TV, Thuy NM. Optimization of amylase and protease production from oyster mushrooms koji (Pleurotus spp.) using response surface methodology. J Appl Biol Biotech. 2022; 10(01):54–61.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Zhang YF, Tao WY. Flavor and taste compounds analysis in Chinese solid fermented soy sauce. Afr J Biotechnol 2009;8:673-81.

2. Kataoka S. Functional effects of Japanese style fermented soy sauce (shoyu) and its components. J Biosci Bioeng. 2005;100:227-34. https://doi.org/10.1263/jbb.100.227

3. Kim KM, Lim J, Lee JJ, Hurh BS, Lee I. Characterization of Aspergillus sojae isolated from Meju, Korean traditional fermented soybean brick. J Microbiol Biotechnol 2017;27:251-61. https://doi.org/10.4014/jmb.1610.10013

4. Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 2006;58:1-55. https://doi.org/10.1016/S0065-2164(05)58001-8

5. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature 2005;438:1157-61. https://doi.org/10.1038/nature04300

6. Liu Z, Gosser Y, Baker PJ. Structural and function studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 2009;131(43):15711-6. https://doi.org/10.1021/ja9046697

7. Al-Shehri MA. Production and some properties of protease produced by Bacillus licheniformis isolated from Tihamet Aseer. Saudi Arabica Pak J Biol Sci 2004;7:1631-5. https://doi.org/10.3923/pjbs.2004.1631.1635

8. Hishiya N, Watanable M, Sakurai M, Fujita K, Noda T. Method for producing rapid fermented type miso-like food material with favorable taste and flavor. Japanese Patent Application, Tokyo, Japan, 2007.

9. Millikan M. Nutritional metals in foods by AAS. In: Farrukh, M.A. (Ed), Atomic Absorption Spectroscopy. InTechopen, London, UK, pp 143-66, 2012. https://doi.org/10.5772/27556

10. Akindahunsi AA, Oyetayo FL. Nutrient and antinutrient distribution of edible mushroom, Pleurotus tuber-regium (fries) singer. LWT Food Sci Technol 2006;39:548-53. https://doi.org/10.1016/j.lwt.2005.04.005

11. Okolo BN, Ezeogu LI, Mba CI. Production of raw starch digesting amylase by Aspergillus niger grown on native starch sources. J Sci Food Agri 1995;69:109-15. https://doi.org/10.1002/jsfa.2740690117

12. Anson ML. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 1938;22:79-89. https://doi.org/10.1085/jgp.22.1.79

13. AOAC. Official methods of analysis of association of official analytical chemists. AOAC, Washington, DC, USA, 2010.

14. Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A et al. Aspergillus oryzae in solid-state and submerged fermentations progress report on a multi-disciplinary project. FEM Yeast Res 2002;2:245-8. https://doi.org/10.1111/j.1567-1364.2002.tb00089.x

15. Grimm LH, Kelly S, Volkerding II, Krull R, Hempel DC. Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 2005;92(7):879-88. https://doi.org/10.1002/bit.20666

16. Paul GC, Thomas CR. Characterisation of mycelial morphology using image analysis. Adv Biochem Eng Biotechnol 1998;60:1-59. https://doi.org/10.1007/BFb0102278

17. Chancharoonpong C, Hsieh P, Sheu S. Production of enzyme and growth of Aspergillus oryzae S. on aoybean koji. Int J Biosci Biochem Bioinformatics 2012;2(4):2-5. https://doi.org/10.1016/j.apcbee.2012.06.011

18. Lubis D, Wina E, Harvanto B, Suhargiantatmo T. Effectiveness of Aspergillus oryzae fermentation culture to improve digestion of fibrous feeds: in vitro. Indones J Anim Vet Sci 2002;7(2):90-8.

19. Jiang X, Xu Y, Ye J, Yang Z, Huang S, Liu Y, et al. Isolation, identification and application on soy sauce fermentation flavor bacteria of CS1.03. J Food Sci Technol 2019;56(4):2016-26. https://doi.org/10.1007/s13197-019-03678-w

20. Narahara H, Koyama Y, Yoshida T, Pichangkura S, Ueda R, Taguchi H. Growth and enzyme production insolid-state culture of Aspergillus oryzae. J Ferm Technol 1982;60:311-9.

21. Nagel FJ, Tramper J, Bakker MS, Rinzema A. Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng 2001;72:219-30. https://doi.org/10.1002/1097-0290(20000120)72:2<219::AID-BIT10>3.0.CO;2-T

22. Farid MAF, Shata HMAH. Amylase production from Aspergillus oryzae LS1 by solid-state fermentation and its use for the hydrolysis of wheat flour. Iran J Biotechnol 2011;9(4):267-74.

23. Sangeetha PT, Ramesh MN, Prapulla SG. Production of fructosyltransferase by Aspergillus oryzae CFG 202 in solid state fermentation using agricultural by products. Appl Microbiol Biotechnol 2004;65(5):530-7. https://doi.org/10.1007/s00253-004-1618-2

24. Zambare V. Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int J Life Sci 2010;4:16-25. https://doi.org/10.3126/ijls.v4i0.2892

25. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandley A. Alpha amylase production by Aspergillus oryzae employing solid state fermentation. Appl Microbiol Biotechnol 2007;66:621-6.

26. Puri S, Aora M, Sarao L. Production and optimization of amylase and glucoamylase using Aspergillus oryzae under solid state fermentation. Int J Res Pure Appl Microbiol 2013;3(3):83-8.

Article Metrics

8 Absract views 10 PDF Downloads 18 Total views

Related Search

By author names


    Warning: Cannot modify header information - headers already sent by (output started at /home/jabonlin/public_html/jab_php/abstract.php:245) in /home/jabonlin/public_html/jab_php/articlemodule/searchArticles.php on line 1162
    Giang N T N [PubMed] [Google Scholar ]
    Khai T V [PubMed] [Google Scholar ]
    Thuy N M [PubMed] [Google Scholar ]

    Warning: Invalid argument supplied for foreach() in /home/jabonlin/public_html/jab_php/abstract.php on line 819

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required

Notice: Undefined variable: dbq35 in /home/jabonlin/public_html/jab_php/abstract.php on line 942

Warning: mysqli_num_rows() expects parameter 1 to be mysqli_result, null given in /home/jabonlin/public_html/jab_php/articlemodule/database.php on line 379
Similar Articles