Home >Archive

Volume: 3, Issue: 1, Jan-Feb, 2015
DOI: 10.7324/JABB.2015.3105

Research Article

Analysis of genetic population structure of an endangered Serranid fish species in the South Korean waters: a bioinformatic simulation

Khaled Mohammed-Geba

  Author Affiliations


Groupers (Order: Perciformes, Family: Serranidae) are of the most economically important fishes in the world to both fisheries and aquaculture sectors. Several species are now classified as endangered. Red-spotted, Hong Kong grouper, Epinephelus akaara, is a grouper that provides high economic values for the markets in Hong Kong and Japan. This species falls under the International Union for Conservation of the Nature (IUCN) Red List of endangered species. In order to perform a bioinformatic simulating analysis for the genetic population structure of this species in the South Korean waters, more specifically in Namhae island, 73 nucleotide sequences of cytochrome oxidase subunit 1 (CO1) were retrieved from the GenBank database. Number of haplotypes, polymorphic sites, and the interrelationships between haplotypes were all determined. The results indicated the main haplotype lineages in the area of study. Also, signs of recent population expansion could be detected, alongside with identifying some low frequency haplotypes that may have originated as a result of adaptation to the conditions at this area. This study resulted in partitioning of E. akaara population in the Namhae island into several units of interest for conservation.

Keywords: Epinephelus akaara, CO1, East China Sea, GenBank, population genetics.

Citation: Khaled Mohammed-Geba. Analysis of genetic population structure of an endangered Serranid fish species in the South Korean waters: a bioinformatic simulation. J App Biol Biotech, 2015; 3 (01): 024-029. DOI: 10.7324/JABB.2015.3105

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Okumura S, Okamoto K, Oomori R, Nakazono A. Spawning behavior and artificial fertilization in captive reared red spotted grouper, Epinephelus akaara. Aquaculture 2002; 206: 165-173. DOI:10.1016/S0044-8486(01)00722-0.

2. Heemstra PC, Randall JE. Groupers of the World (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Species Catalogue 1993; 125: pp. 106-107.

3. Antoro S, Na-Nakorn U, Koedprang W. Study of genetic diversity of orange-spotted grouper, Epinephelus coioides, from Thailand and Indonesia using micro-satellite markers. Mar Biotechnol 2006; 8: 17 26.

4. Goldstein RJ. Marine Reef Aquarium Handbook 2nd Edition. Chapter 22: Fishes: care and breeding. Barron's Educational Series, Inc. 2006, p. 168.

5. Heppell SS, Heppell SA, Coleman FC, Koenig CC. Models to compare management options for a protogynous fish. Ecol Appl 2006; 16: 238–249. DOI: 10.1890/04-1113.

6. Liu W, Hsu CH, Chang CY, Chen HH, Lin CS. Immune response against grouper necrosis virus by vaccination of virus-like particles. Vaccine 2006; 24: 6282–6287. DOI:10.1016/j.vaccine.2006.05.073.

7. Zhou G-Z, Li Z-Q, Yuan X-P, Zhang Q-Y. Establishment, Characterization, and Virus Susceptibility of a New Marine Cell Line from Red Spotted Grouper (Epinephelus akaara). Mar Biotechnol 2007; 9: 370–376. DOI: 10.1111/j.1365-2761.2011.01281.x.

8. Cornish, A 2003. Epinephelus akaara. The IUCN Red List of Threatened Species. Version 2014.2. . Downloaded on 07 September 2014.

9. He Q, Lu G, Che K, Zhao E, Fang Q, Wang H, Liu J, Huang C, Dong Q. Sperm cryopreservation of the endangered red spotted grouper, Epinephelus akaara, with a special emphasis on membrane lipids. Aquaculture 2011; 318: 185–190. DOI:10.1016/j.aquaculture.2011.05.025.

10. Mao M-G, Jiang J-L, Perálvarez-Marín A, Wang K-J, Lei J-L. Characterization of the Mx and hepcidin genes in Epinephelus akaara asymptomatic carriers of the nervous necrosis virus. Aquaculture2013; 408–409: 175-183. DOI:10.1016/j.aquaculture.2013.05.039.

11. Hebert PDN, Cywinska A, Ball S, deWaard J. Biological identifications through DNA barcodes. Proceed Royal Soc London B 2003a; 270: 313-321. DOI:10.1098/rspb.2002.2218.

12. Hebert PDN, Ratnasingham S, deWaard J. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceed Royal Soc London B 2003b; 270: 96–99. DOI: 10.1098/rsbl.2003.0025.

13. Hendrich L, Morinière J, Haszprunar G, Hebert PD, Hausmann A, Köhler, F, Balke M. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour 2014; DOI: 10.1111/1755-0998.12354.

14. Han S-H, Lee Y-D, Baek H-J, Oh H-S, Noh C-H. 2014. Genetic structure of the Hong Kong grouper (Epinephelus akaara) based on the mitochondrial COI haplotypes in South Korea. Direct submission to GenBank database.

15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. ClustalW and ClustalX version 2.0. Bioinformatics 2007; 23: 2947-8.

16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 2013; 30: 2725-2729. DOI: 10.1093/molbev/mst197.

17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acid Res 1994; 22: 4673-4680.

18. Rozas, J S-D, Juan C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatic 2003; 19: 2496-2497. DOI: 10.1093/bioinformatics/btg359.

19. Bandelt H-J, Peter F, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16: 37-48.

20. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 2010; 10: 564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.

21. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585-595.

22. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997; 147: 915-25.

23. Borrell YJ, Piñera JA, Sánchez-Prado JA, Blanco G. Mitochondrial DNA and microsatellite genetic differentiation in the European anchovy Engraulis encrasicolus L. ICES J Mar Sci 2012; 69: 1357–1371.

24. Harpending HC. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biol: 591-600.

25. Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol Biol Evol. 2002; 19: 2092-100.

26. Chen S, Liu T, Li Z, Gao T. Genetic population structuring and demographic history of red spotted grouper (Epinephelus akaara) in South and East China Sea. African J Biotechnol 2008; 7: 3554-3562.

27. Zhang J, Cai Z, Huang L. Population genetic structure of crimson snapper Lutjanus erythropterus in East Asia, revealed by analysis of the mitochondrial control region. ICES J Mar Sci 2006; 63: 693-704. DOI:10.1016/j.icesjms.2006.01.004.

28. He L, Zhang A, Weese D, Zhu C, Jiang C, Qiao Z. Late Pleistocene population expansion of Scylla paramamosain along the coast of China: A population dynamic response to the Last Interglacial sea level highstand. J Experiment Mar Biol Ecol 2010; 385: 20–28. DOI:10.1016/j.jembe.2010.01.019.

29. Zeng L, Cheng Q, Chen X. Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas. Biochem System Ecol 2012; 42: 83–93. DOI:10.1016/j.bse.2012.02.014.

30. Wang J, Sun P, Yin F. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea. Biochem System Ecol 2014; 55: 268–274. DOI:10.1016/j.bse.2014.03.026.

Article Metrics

Similar Articles