Research Article | Volume: 2, Issue: 3, May-June, 2014

Antibacterial activity of Conventional and Modified Glass Ionomer Cement against Streptococcus mutans

M.P. Prasad Maulik A Maradia   

Open Access   

Published:  Jun 27, 2014

DOI: 10.7324/JABB.2014.2304
Abstract

This study evaluates the antibacterial effects and increase in the antibiotic spectrum properties of conventional glass-ionomer cements (GIC) and the modified GICs with three antimicrobial chemical compounds. Three chemical compounds such as Boric acid, Chloroxylenol and Thymol were added to the GIC powder in the concentration of 2 % and 5 % for its antagonistic action against Streptococcus mutans (MTCC - 497). The antibacterial activity of the modified GICs with three chemicals was evaluated six days for its inhibitory activity against Streptococcus mutans by Kirby-Bauer agar well diffusion method. All the modified GICs samples have showed the increased level of inhibition compared to the ionomer cement without the chemical compounds. The compound Thymol has showed maximum inhibition, followed by Chloroxylenol and then Boric acid. Zone of inhibition was greater at 5% concentration for Thymol and Chloroxylenol. Where, Boric acid has shown maximum inhibition at 2% concentration. Thus the use of antimicrobial chemical compounds along with glass ionomer cement has provided higher antibacterial effect against the Streptococcus mutans and therefore can be used for as an alternative for the treatment of dental caries.


Keyword:     Streptococcus mutansThymolBoric acidChloroxylenol.


Citation:

M.P. Prasad, Maulik A Maradia., Antibacterial activity of Conventional and Modified Glass Ionomer Cement against Streptococcus mutans. J App Biol Biotech. 2014; 2 (03): 017-020. DOI: 10.7324/JABB.2014.2304

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Tobias RS, Browne RM, Wilson CH. Anti bacterial activity of dental restorative materials. Int Endod J. 1985; 18: 161-71.

2. Tobias RS. Antibacterial properties of dental restorative materials. Int Endod J. 1998; 21: 155-60

3. Houte, JV. Role of micro‐organisms in caries etiology. J Dent Res. March 1994; 73: 672‐681

4. Vermeersch G, Leloup G, Delmee M, Vreven J. Antibacterial activity of glass‐ionomer cements,compomers and resin composites: relationship between acidity and material setting phase. Journal of Oral Rehabilitation. 2005; 32: 368‐374.

5. Daugela P, Oziunas R, Zekonis G. Antibacterial potential of contemporary dental luting cements. Stomatologija, Baltic Dental and

Maxillofacial Journal. 2008; 10: 16‐21.

6. Benelli EM, Serra MC, Rodrigues AL Jr, Cury JA. In situ anticariogenic potential of glass ionomer cement. Caries Res 1993; 27: 280-284.

7. Nakajo K, Imazato S, Takahashi Y, Kiba W, Ebisu S, Takahashi N. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent Mater 2009; 25: 703-708.

8. Seppa L, Torppa-Saarinen E, Luoma H. Effect of different glass ionomers on the acid production and electrolyte metabolism of Streptococcus mutansIngbritt. Caries Res 1992; 26: 434-438.

9. Dionysopoulos P, Kotsanos N, Koliniotou-Koubia E, Tolidis K. Inhibition of demineralization in vitroaround fluoride releasing materials. J Oral Rehabil 2003; 30: 1216-1222.

10. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials- Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007; 23: 343-362.

11. Bruch M K. Chloroxylenol: an old-new antimicrobial. In: Ascenzi J M, editor. Handbook of disinfectants and antiseptics.New York, N.Y: Marcel Dekker, Inc.; 1996; 265–294.

12. Russell A D, Furr J R. The antibacterial activity of a newchloroxylenol formulation containing ethylenediamine tetraacetic acid. J Appl Bacteriol. 1977; 43:253–260.

13. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H et al. Boron in plant biology. Plant Biol 2002; 4: 205–23.

14. Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD. A critical analysis of boron toxicity in plants. Plant Cell Environ 2004; 25: 1405–14.

15. Camgoz B, Saç MM, Bolca M, Ozen F, Oruç OG, Demirel N. Investigation of radioactive and chemical contents of thermal waters; Izmir Seferihisar region representative. Ekoloji 2010; 19: 78–87 (in Turkish with English abstract).

16. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 2002; 415: 545–9.

17. Lowery CA, Salzameda NT, Sawada D, Kaufmann GF, Janda KD. Medicinal chemistry as a conduit for the modulation of quorum sensing. J Med Chem 2010; 53: 7467–89.

18. Puertas-Mejia M., Hillebrand S., Stashenko E.,Winterhalter P.: Flavour Fragr. J. 2002; 17: 380.

19. Goren A.C., Topcu G., Bilsel G., Bilsel M., Wilkinson J.M., Cavanagh H.M.A.: Nat. Prod. Res. 2004; 18: 189.

20. Salgueiro L.R., Pinto E., Goncalves M.J., PinaVaz C., Cavaleiro C., Rodrigues A.G., Palmeira A. et al.: Planta Med. 2004; 70, 572.

21. Yoshida T., Mori K., He G.X.: Heterocycles 1995; 41: 1923.

22. Oke F., Aslim B., Oztirk S., Altundag S.: Food Chem. 2009; 112, 874.

23. Kordali S., Cakir A., Ozer H., Cakmakei R., Kesdek M., Mete E.: Bioresour. Technol. 2008; 99: 8788.

24. Peltoketo A., Dorman H.J.O., Yrjonen T., Summanen J., Laakso I., Vuorela H., Hiltunen R.: Phytomedicine 2000; 7: 75.

25. Liolios C.C., Gortzi O., Lalas S., Tsaknis J., Chinou I.: Food Chem. 2009; 77: 112.

26. Domenico Trombetta, Francesco Castelli, Maria Grazia Sarpietro, Vincenza Venuti, Mariateresa Cristani, Claudia Daniele, Antonella Saija, Gabriela Mazzanti, and Giuseppe Bisignano. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrobial Agents and Chemotherapy, June 2005; 49 (6): 2474–2478.

27. ISO 9917-1. Dentistry-water based cements, Part 1: powder/liquid acid-base cements. 1st ed. Geneva, Switzerland: ISO copyright office; 2003.

28. Miller BH, Komatsu H, Nakajima H, Okabe T. Effect of glass ionomer manip-ulation on early fluoride release. Am J Dent 1995; 8:182–6.

29. Tam LE, Chan GP, Yim D. In vitro caries inhibition effects by conventional and resin-modified glass-ionomer restora-tions. Oper Dent 1997; 22:4–14.

30. Marthaler TM. Changes in dental caries 1953–2003. Caries Res 2004;38:173–81.

31. Van Amerongen WE. Dental caries under glass ionomer restorations. J Public Health Dent 1996;56:150–4

32. Ribeiro J, Ericson D. In vitro antibacter-ial effect of chlorhexidine added to glass-ionomer cements. Scand J Dent Res 1991; 99:533–40.

33. Sanders BJ, Gregory RL, Moore K, Avery DR. Antibacterial and physical properties of resin modified glass-ionomers com-bined with chlorhexidine. J Oral Rehabil 2002; 29:553–8.

34. Coogan M. M. and P. J. Creaven. Antibacterial properties of eight dental cements. International Endodontic Journal, 1993; 26(6): 355–361.

35. ESPE, 3M. Technical product profile RelyX™ Unicem Carey CM, Spencer M, Gove RJ, eichmiller FC. Fluoride release from resin-modified glass-ionomer cement in a continuous-flow system: effect of pH. J Dent Res 2003; 82(10):829-32.

Article Metrics
68 Views 47 Downloads 115 Total

Year

Month

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles