Home >Current Issue

Volume: 7, Issue: 3, May-June, 2019
DOI: 10.7324/JABB.2019.70314

Review Article

Genome complexity of begomovirus disease and a concern in agro-economic loss

Hanjabam Joykishan Sharma, Susheel Kumar Sharma, Nongthombam Bidyananda Singh

  Author Affiliations


Significant agro-economic loss becomes a foremost concern in terms of productivity and feeding the expanding population. Among all plant pathogens, begomovirus is also one of the contagions which affect most monocot and dicots. Begomovirus is transmitted by the whitefly vector Bemisia tabaci and causes potential yield reduction in a number of economically important crops. The evolution of the new strain of begomovirus through genetic changes, climatic factors, and mutation drastically affects the agricultural yield and thus the economic loss. A strategic Begomo management would foster the healthier agricultural environment. The review focus on classification, genome organisation, replication, pathogenecity, phylogeny, genetic diversity, technology behind its suppression, concealment and kayo.


Bemisia tabaci, Begomovirus, Agro-economic lost, Pathogenicity, CRISPR/cas9, siRNA silencing, Diversity

Citation: How to cite this article: Sharma HJ, Sharma SK, Singh NB. Genome complexity of begomovirus disease and a concern in agro-economic loss. J App Biol Biotech. 2019;7(03):78-83. DOI: 10.7324/JABB.2019.70314

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1.Yadav P, Suyal G, Mukherjee SK. Begomo virus DNA replication and pathogenecity. Curr Sci 2010;98:360-8.

2. Lecoq H, Desbiez C. Virus and virus diseases of vegetables in the Mediterranean basin. Adv Virus Res 2012;101:243-9.

3. Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, Brown JK, et al. An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite AQ1 AQ1 AQ3 accumulation. J Gen Virol 2011;92:706-17. https://doi.org/10.1099/vir.0.025288-0

4. Kumar RV, Singh AK, Singh AK, Yadav T, Basu S, Kushwaha N, et al. Complexity of Begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J Gen Virol 2015;96:3143-58. https://doi.org/10.1099/jgv.0.000254

5. Rishi N. Significant plant diseases in India and glimpse of modern disease management technology. J Gen Plant Pathol 2008;75:1-18. https://doi.org/10.1007/s10327-008-0139-8

6. Bisaro DM. Germinivirus DNA replication. Cold Spring Harb Monogr Arch 2001;30:833-54.

7. Arguello-Astorga G, Ascencio-Ibanez T, Dallas MB, Orozco BM, Bowden H. High frequency reversion of Gemini virus replication protein mutants during infection. J Virol 2007;81:11005-15. https://doi.org/10.1128/JVI.00925-07

8. Leke WN, Mignouna DB, Brown JK, Kvarnheden A. Begomo disease complex: Emerging threats to vegetable production systems of West and Central Africa. Agric Food Secur 2015;4:1-14. https://doi.org/10.1186/s40066-014-0020-2

9. Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, et al. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 2003;312:106-21. https://doi.org/10.1016/S0042-6822(03)00200-9

10. Bisaro DM. Silencing suppression by geminivirus proteins. Virology 2006;344:158-68. https://doi.org/10.1016/j.virol.2005.09.041

11. Khan AJ, Al Saddy NA, Al-Mahruki MS, Al Oufi M, Ali M,\\ Al-Subhi M. Molecular characterisation of Begomo infecting sweet pepper in Oman. Indian J Biotechnol 2007;6:45-51.

12. Singh DK, Karjee S, Malik PS, Islam N, Mukherjee SK. DNA replication and pathogenecity of MYMIV. Commun Curr Res Educ Top Trends Appl Microbiol 2007;23:101-10.

13. Mayo MA, Pringle CR. Virus taxonomy. J Gen Virol 1997;7514

14. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB. Bemisia tabaci: Astatement of species status. Annu Rev Entomol 2011;56:1-9. https://doi.org/10.1146/annurev-ento-112408-085504

15. Snehi SK, Prihor SS, Gupta G, Singh V, Raj SK, Prasad V. The current status of new emerging begomovirus disease on Jatropha species from India. J Plant Pathol Microbiol 2016;7:1-8.

16. Srivastava A, Kumar S, Jaidi M, Raj SK. Molecular characterization of a new Begomovirus associated with leaf yellow mosaic disease of Jatropha curcas in India. Arch Virol 2015;160:1359-62. https://doi.org/10.1007/s00705-015-2375-5

17. Brown JK. The molecular epidemiology of Begomovirus. In: Trends in Plant Virology. New York: The Haworth Press; 2001. p. 279-316.

18. Obbard DJ, Gordon KH, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. PhilosTrans R Soc Lond B Biol Sci 2009;364:99-115. https://doi.org/10.1098/rstb.2008.0168

19. Tomás DM, Ca-izares MC, Abad J, Fernández-Mu-oz R, Moriones E. Resistance to tomato yellow leaf curl virus accumulation in the tomato wild relative Solanum habrochaites associated with the C4 viral protein. Mol Plant Microbe Interact 2011;24:849-61. https://doi.org/10.1094/MPMI-12-10-0291

20. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, et al. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 2005;79:2517-27. https://doi.org/10.1128/JVI.79.4.2517-2527.2005

21. Van Den Bosch F, Akudibilah G, Steal S, Jeger M. Host resistance and evolutionary response of plant virus. J Appl Ecol 2006;43:506-15. https://doi.org/10.1111/j.1365-2664.2006.01159.x

22. Vanitharani R, Chellappan P, Fauquet CM. Geminiviruses and RNA silencing. Trends Plant Sci 2005;10:144-51. https://doi.org/10.1016/j.tplants.2005.01.005

23. Navas-Castillo J, Fiallo-Oliv\é E, Sánchez-Campos S. Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 2011;49:219-48. https://doi.org/10.1146/annurev-phyto-072910-095235

24. Duffy S, Holmes EC. Validation of high rates of nucleotide substitution in geminiviruses: Phylogenetic evidence from East African cassava mosaic viruses. J Gen Virol 2009;90:1539-47. https://doi.org/10.1099/vir.0.009266-0

25. Prasanna HC, Sinha DP, Verma A, Singh M, Singh B, Rai M, et al. The population genomics of begomoviruses: Global scale population structure and gene flow. Virol J 2010;7:220. https://doi.org/10.1186/1743-422X-7-220

26. Fauquet C, Stanley J. Germinivirus classification and nomenclature: Progress and problems. Ann Appl Biol 2003;142:165-89. https://doi.org/10.1111/j.1744-7348.2003.tb00241.x

27. Fauquet CM, Sawyer S, Idris AM, Brown JK. Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean basins. Phytopathology 2005;95:549-55. https://doi.org/10.1094/PHYTO-95-0549

28. Leke WN, Brown JK, Ligthart ME, Sattar N, Njualem DK, Kvarnheden A, et al. Ageratum conyzoides: A host to a unique Begomovirus disease complex in Cameroon. Virus Res 2012;163:229-37. https://doi.org/10.1016/j.virusres.2011.09.039

29. Sanz AI, Fraile A, Gallego JM, Malpica JM, Garcia-Arenal F. Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J Mol Evol 1999;49:672-81. https://doi.org/10.1007/PL00006588

30. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. Exploiting chinks in the plant's armor: Evolution and emergence of geminiviruses. Annu Rev Phytopathol 2005;43:361-94. https://doi.org/10.1146/annurev.phyto.43.040204.135939

31. Mansoor S, Briddon RW, Bull SE, Bedford ID, Bashir A, Hussain M, et al. Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA beta. Arch Virol 2003;148:1969-86. https://doi.org/10.1007/s00705-003-0149-y

32. Ma X, Zhu Q, Chen Y, Liu YG. CRISPR/Cas9 platforms for genome editing in plants: Developments and applications. Mol Plant 2016;9:961-74. https://doi.org/10.1016/j.molp.2016.04.009

33. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL, et al. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 2014;7:1494-6. https://doi.org/10.1093/mp/ssu044

34. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 2013;41:e188. https://doi.org/10.1093/nar/gkt780

35. Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 2015;208:298-301. https://doi.org/10.1111/nph.13470

36. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM, et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using cas9 and guide RNA. Plant Physiol 2015;169:931-45. https://doi.org/10.1104/pp.15.00793

37. Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One 2008;3:e3647. https://doi.org/10.1371/journal.pone.0003647

38. Jiang W, Yang B, Weeks DP. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One 2014;9:e99225. https://doi.org/10.1371/journal.pone.0099225

39. Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 2014;79:348-59. https://doi.org/10.1111/tpj.12554

40. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-cas system. Nat Biotechnol 2013;31:686-8. https://doi.org/10.1038/nbt.2650

41. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, et al. Simple methods for generating and detecting locusspecific mutations induced with TALENs in the zebrafish genome. PLoS Genet 2012;8:e1002861. https://doi.org/10.1371/journal.pgen.1002861

42. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using cas9 RNA-guided endonuclease. Nat Biotechnol 2013;31:691-3. https://doi.org/10.1038/nbt.2655

43. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, et al. A robust CRISPR/ Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 2015;8:1274-84. https://doi.org/10.1016/j.molp.2015.04.007

44. Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 2014;166:1292-7. https://doi.org/10.1104/pp.114.247577

45. Osakabe Y, Osakabe K. Genome editing with engineered nucleases in plants. Plant Cell Physiol 2015;56:389-400. https://doi.org/10.1093/pcp/pcu170

46. Kim KS, Bird J, Martin EM, Escudero J. Ultra structural studies of Jatropha gossypifolia infected with Jatropha mosaic virus, a whitely transmitted geminivirus. Phytopathology 2006;76:80. https://doi.org/10.1094/Phyto-76-80

47. Narayana AD, Rangaswamy KT, Shankarappa KS, Maruthi MN, Laksminarayana CN, Rekha AR, et al. District Begomovirus closely related to cassava mosaic virus's cause Indian Jatropha mosaic disease. Int J Virol 2007;3:1-11. https://doi.org/10.3923/ijv.2007.1.11

48. Raj SK, Snehi SK, Kumar S, Khan MS, Pathre U. First molecular identification of a begomovirus in India that is closely related to cassava mosaic virus and causes mosaic and stunting of Jatropha curcas L. Australas Plant Dis Notes 2008;3:69-71. https://doi.org/10.1071/DN08028

49. Snehi SK, Khan MS, Raj SK, Prasad V. Complete nucleotide sequence of croton yellow vein mosaic virus and DNA-\ß associated with yellow vein mosaic disease of Jatropha gossypifolia in India. Virus Genes 2011;43:93-101. https://doi.org/10.1007/s11262-011-0605-9

50. Ramkat RC, Alberto C, Fatemeh M, Margit L. Occurrence of African cassava mosaic virus (ACMV) and East African cassava mosaic virus–Uganda (EACMV-UG) in Jatropha curcas. BMC Proc 2011;5:93. https://doi.org/10.1186/1753-6561-5-S7-P93

51. Royce ME, Wernecke ME, McLaughlin WA, Nakhla MK, Maxwell DP. Tomato dwarf leaf curl virus, a new bipartite geminivirus associated with tomatoes and peppers in Jamaica and mixed infection with tomato leaf curl virus. Plant Pathol 2009;48:370-8.

52. Khan AJ, Idris AM, Al-Saady NA, Al-Mahruki MS, Al-Subhi AM, Brown JK, et al. A divergent isolate of tomato yellow leaf curl virus from Oman with an associated DNA beta satellite: An evolutionary link between Asian and the Middle Eastern virus-satellite complexes. Virus Genes 2008;36:169-76. https://doi.org/10.1007/s11262-007-0163-3

53. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J, et al. A unique virus complex causes ageratum yellow vein disease. Proc Natl Acad Sci U S A 2000;97:6890-5. https://doi.org/10.1073/pnas.97.12.6890

54. Venthana M, Mahatna L, Ghavariya TV, Saranya R. Molecular characterization of tomato leaf curl virus in South Gujarat, India. Int J Curr Microbial App Sci 2017;6:437-81. https://doi.org/10.20546/ijcmas.2017.603.055

55. Sattar MN, Kvarnheden A, Saeed M, Briddon RW. Cotton leaf curl disease-an emerging threat to cotton production worldwide. J Gen Virol 2013;94:695-710. https://doi.org/10.1099/vir.0.049627-0

56. Sattar N, Qurashi F, Iqbal Z, Haider MS. Molecular characterization of hollyhock leaf curl virus and associated DNA-satellites infecting Malva parviflora in Pakistan. Can J Plant Pathol 2017;21:212-7. https://doi.org/10.1080/07060661.2017.1336490

57. Chiemsombat P, Srikamphung B, Yule S. Begomovirus associated to pepper yellow leaf curl disease in Thailand. Open Access J Agric Res 2018;3:123-6.

58. Royce ME, Wernecke ME, McLaughlin WA, Nakhla MK, Maxwell DP. Tomato dwarf leaf curl virus, a new bipartite geminivirus associated with tomatoes and peppers in Jamaica and mixed infection with tomato leaf curl virus. Plant Pathol 2009;48:370-8.

59. Tsaiab WS, Shiha SL, Kenyona L, Greene SK, Janb FJ. Temporal distribution and pathogenecity of the predominant tomato-infecting begomovirus in Taiwan. Plant Pathol 2011;60:787-99. https://doi.org/10.1111/j.1365-3059.2011.02424.x

60. Sanayake DM, Mandal B, Lodha S, Verma A. First report of chilli leaf curl virus affecting chilli in India. Plant Pathol 2007;56:343. https://doi.org/10.1111/j.1365-3059.2007.01513.x

Article Metrics