Home >Current Issue

Volume: 7, Issue: 1, Jan-Feb, 2019
DOI: 10.7324/JABB.2019.70102

Research Article

Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds

Dagon Manoel Ribeiro1, Géssica Tais Zanetti2, Maria Heloisa Moreno Julião2, Tathiana Elisa Masetto2, Jane Mary Lafayette Neves Gelinski3, Gustavo Graciano Fonseca1&3

  Author Affiliations


Increased use of microalgae as food additives, biofuels, pharmaceuticals and in waste treatment increases effluent production. The aim of this work was to evaluate the effect of different culture media on growth of Chlorella sorokiniana and the influence of the cultural refuse on seed germination of lettuce (Lactuca sativa). The microalga was grown in different media for 27 days. The maximum specific growth rate (µmax) during mixotrophic growth phase was obtained in the novel medium composed of 50% NPK medium and 50% Bold Basal medium supplemented with glucose (1 g L-1). Cell proliferation in Bold Basal and NPK media presented a very close µmax values, indicating that NPK may be a good option for low-cost microalgal production. The effluents from the microalgal culture failed to induce any marked variation in the germination of lettuce seeds. This clearly shows that the microalgal effluent does not cause any toxicity to germinating lettuce seeds. Thus C. sorokiniana cultivation combined with horticulture can be utilized as a feasible productive integrated system.


Growth parameters, Organic fertilizers, Horticulture, Plant development, Waste.

Citation: Ribeiro DM, Zanetti GT, Juli\ão MHM, Masetto TE, Gelinski JMLN, Fonseca GG. Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. J App Biol Biotech. 2019;7(01):006-010. DOI: 10.7324/JABB.2019.70102

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 2011; 29:615-623. https://doi.org/10.1016/j.tibtech.2011.06.005

2. Richardson JW, Johnson MD. Financial feasibility analysis of NAABB developed technologies. Algal Res 2015; 10:16-24. https://doi.org/10.1016/j.algal.2015.03.020

3. Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 2010; 14:1037-1047. https://doi.org/10.1016/j.rser.2009.11.004

4. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 2010; 14:217-232. https://doi.org/10.1016/j.rser.2009.07.020

5. Foley PM, Beach ES, Zimmerman JB. Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 2011; 13:1399- 1405. https://doi.org/10.1039/c1gc00015b

6. Draaisma RB, Barbosa MJ, Slegers PM, Brentner LB, Roy A, Wijffels RH. Food commodities from microalgae. Curr Opin Biotechnol 2013; 24:169-177. https://doi.org/10.1016/j.copbio.2012.09.012

7. Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM. Biorefinery of microalgae for food and fuel. Bioresour Technol 2013; 135:142-149. https://doi.org/10.1016/j.biortech.2012.10.135

8. Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res 2014; 6:52-63. https://doi.org/10.1016/j.algal.2014.09.002

9. Granados MR, Aci\én FG, G\ómez C, Fernández-Sevilla JM, Molina Grima E. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 2012; 118:102-110. https://doi.org/10.1016/j.biortech.2012.05.018

10. Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv 2012; 30:709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001

11. Borges L, Mor\ón-Villarreyes JA, D'Oca MGM, Abreu PC. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy 2011; 35:4449-4454. https://doi.org/10.1016/j.biombioe.2011.09.003

12. Barros AI, Gonçalves AL, Simões M, Pires JCM. Harvesting techniques applied to microalgae: A review. Renew Sustain Energy Rev 2015; 41:1489-1500. https://doi.org/10.1016/j.rser.2014.09.037

13. Abdalla AMS, Bashir NHH, Assad YOH. Lactuca spp. seeds as a bioindicator for the toxicity of gezira tannery corporation wastewater. Jpn J Vet Res 2013; 61:S41-S43.

14. Diniz AA, Cavalcante LF, Rebequi AM, Nunes J, Brehm MAS. Liquid cattle manure and urea in soil on growth and biomass production of yellow passion fruit plants. Rev Ciên Agron 2011; 42:597-604. https://doi.org/10.1590/S1806-66902011000300004

15. Uysal O, Uysal FO, Ekinci K. Evaluation of microalgae as microbial fertilizer. Eur J Sustain Develop 2015; 4:77-82. https://doi.org/10.14207/ejsd.2015.v4n2p77

16. Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N, Haesaert G, De Gelder L. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 2016; 28:2367-2377. https://doi.org/10.1007/s10811-015-0775-2

17. Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones in algae. Rus J Plant Physiol 2007; 54:163-170. https://doi.org/10.1134/S1021443707020021

18. Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J. Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 2013; 7:348-353. https://doi.org/10.1016/j.plaphy.2013.05.037

19. Stirk WA, Ördög V, Novák O, Rolcík J, Strnad M, Bálint P, van Staden J. Auxin and cytokinin relationships in twenty-four microalgae strains. J Phycol 2013; 49:459-467. https://doi.org/10.1111/jpy.12061

20. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 2004; 65:635-648. https://doi.org/10.1007/s00253-004-1647-x

21. Bischoff HW, Bold HC. Phycological studies. IV. Some soil algae from enchanted rock and related algal species. University of Texas Publications 1963; 6318:1-95.

22. Dragone G, Fernandes B, Vicente AA, Teixeira JA. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 2011; 88:3331-3335. https://doi.org/10.1016/j.apenergy.2011.03.012

23. Sipa\úba-Tavares LH, Pelicione LC, Oliveira A. Use of an inorganic fertilizer (NPK) and the Chu12 medium for cultivation of Ankistrodesmus gracilis in the laboratory. Braz J Ecol 1999; 3:10-15.

24. Nascimento VM, Silva LF, Gomez JGC, Fonseca GG. Growth of Burkholderia sacchari LFM 101 cultivated in glucose, sucrose and glycerol. Scien Agric 2016; 73:429-433. https://doi.org/10.1590/0103-9016-2015-0196

25. ISTA. 2008. International Seed Testing Association. Testing coated seeds. In: International rules for seed testing. ed. Bassersdorf. cap.11, p.11.1-11.8; annexe11, p.11A.1-11A.3.

26. Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour

27. Technol 2012; 110:510-516.

28. 27. Stemmler K, Massimi R, Kirkwood AE. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production. Peer J 2016; 4:e1780. https://doi.org/10.7717/peerj.1780

29. 28. Derner RB, Ohse S, Villela M, de Carvalho SM, Fett R. Microalgae, products and applications. Ciên Rural 2006; 36:1959-1967.

30. 29. Cai T, Park SY, Li YB. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 2013; 19:360- 369. https://doi.org/10.1016/j.rser.2012.11.030

31. 30. Behrens PW, Kyle DJ. Microalgae as a source of fatty acids. J Food Lipids 1996; 3:259-272. https://doi.org/10.1111/j.1745-4522.1996.tb00073.x

32. 31. Dunstan GA, Volkman JK, Barrett SM, Leroi J-M, Jeffrey SW. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 1993; 35:155-161. https://doi.org/10.1016/S0031-9422(00)90525-9

33. 32. Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 2006; 45:160-186. https://doi.org/10.1016/j.plipres.2006.01.001

34. 33. Carvalho MAC, Arf O, Sá ME, Buzetti S, Santos NCB, Bassan DAZ. Bean (Phaseolus vulgaris L.) yield and seed quality under the influence of nitrogen split and sources. Rev Bras Ciên Solo 2001; 25:617-624.

35. 34. Santos HC, Viana JS, Gonçalves EP, Bruno RLA, Fraga VS. Physiological quality of sorghum seeds in response to copper and zinc fertilization. Rev Caatinga 2008; 21:64-74.

36. 35. Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol 2001; 125:662-672. https://doi.org/10.1104/pp.125.2.662

Article Metrics

Similar Articles

Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants
Murali Mahadevamurthy, Thriveni M Channappa, Manjula Sidappa, Mythrashree S Raghupathi, Amruthesh K Nagaraj

Recent Advances in substrate utilization for fermentative hydrogen Production
Pankaj K. Rai