Home >Current Issue

Volume: 7, Issue: 1, Jan-Feb, 2019
DOI: 10.7324/JABB.2019.70108

Research Article

In vitro propagation of chia (Salvia hispanica L.) and assessment of genetic fidelity using random amplified polymorphic DNA and intersimple sequence repeat molecular markers


Anita Yadav1, S L Kothari2, Sumita Kachhwaha3, Anuja Joshi1

  Author Affiliations


Abstract

A well-organized micropropagation protocol has been designed for Salvia hispanica L., which bears high nutritional and medicinal value. Seeds of S. hispanica L. were germinated aseptically on half strength MS medium. Nodal explants obtained from in vitro germinated seedling were cultured on MS medium fortified with 6-benzyladenine (BAP) (1–5 mg/l) or Kinetin (Kin) (1–5 mg/l) individually or with α-naphthalene acetic acid (0.1–1 mg/l) and indole3-acetic acid (IAA) (0.1–1 mg/l) for clonal propagation. It was observed that maximum amount of shoots per explant (9.02 ± 2.65) was achieved on culture medium fortified with 3 mg/l BAP which was also optimum for subculturing of the regenerated shoots. Rooting was achieved on medium supplemented with 1 mg/l IBA. The rooted plantlets were acclimatized and transferred to field conditions, with 75% survival rate. Genetic fidelity studies were carried out on regenerated plantlets by 30 random amplified polymorphic DNA and 10 intersimple sequence repeat (ISSR) as molecular markers.

Keywords:

In vitro propagation, Chia, Genetic fidelity, Random amplified polymorphic DNA, Intersimple sequence repeat, Molecular markers.



Citation: Yadav A, Kothari SL, Kachhwaha S, Joshi A. In vitro propagation of chia (Salvia hispanica L.) and assessment of genetic fidelity using random amplified polymorphic DNA and intersimple sequence repeat molecular markers. J App Biol Biotech. 2019;7(01):42-47. DOI: 10.7324/JABB.2019.70108


Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

1. Jamboonsri W, Phillips TD, Geneve RL, Cahill JP, Hildebrand DF. Extending the range of an ancient crop, Salvia hispanica L.- a new ω3 source. Genetic Resources and Crop Evolution 2012; 59(2):171-178. https://doi.org/10.1007/s10722-011-9673-x

2. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition 2002; 21(6):495-505. https://doi.org/10.1080/07315724.2002.10719248

3. Jeong SK, Park HJ, Park BD, Kim IH. Effectiveness of topical chia seed oil on pruritus of end-stage renal disease (ESRD) patients and healthy volunteers. Annals of Dermatology 2010; 22(2):143-148. https://doi.org/10.5021/ad.2010.22.2.143

4. Lu Y, Foo LY. Polyphenolics of Salvia: A review. Phytochemistry 2002; 59:117-140. https://doi.org/10.1016/S0031-9422(01)00415-0

5. Yadav A, Joshi A, Kothari SL, Kachhwaha S, Purohit S. Medicinal, Nutritional and Industrial Applications of Salvia species: A Revisit. Int J Pharm Sci Rev Res 2017; 43(2):27-37.

6. Rosamond WD. Dietary fiber and prevention of cardiovascular disease. Journal of the American College Cardiology 2002; 39:57-59. https://doi.org/10.1016/S0735-1097(01)01685-0

7. Ayerza R. Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J Am Oil Chem Soc 1995; 72 (9): 1079-1081. https://doi.org/10.1007/BF02660727

8. Craig R, Sons M. Application for approval of whole chia (Salvia hispanicaL.) seed and ground whole chia as novel food ingredients. Advisory committee for novel foods and processes. Ireland: Company David Armstrong; 2004, p. 1-29.

9. Taga MS, Miller EE, Pratt DE. Chia seeds as a source of natural lipid antioxidants. J Am Oil Chem Soc 1984; 61:928-931. https://doi.org/10.1007/BF02542169

10. Dubois V, Breton S, Linder M, Fanni J, Parmentier M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 2007; 109(7):710-732. https://doi.org/10.1002/ejlt.200700040

11. Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y. A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliate Raf.). Plant Cell Rep 1994; 13:541-545.

12. Jha TB, Ghosh B. Plant tissue culture-basic and applied. India: Universities Press; 2005.

13. Ates Sonmezoglu O, Bozmaz B, Yıldırım A, Kandemir N, Aydın N. Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters. Turk J Biol 2012; 36:589-597.

14. Phulwaria M, Rai MK, Shekhawat NS. An Improved Micropropagation of Arnebia hispidissima (Lehm.) DC. and Assessment of Genetic Fidelity of Micropropagated Plants Using DNA-Based Molecular Markers. Appl Biochem Biotechnol 2013; 170:1163-1173. https://doi.org/10.1007/s12010-013-0266-3

15. Williams K, Kubelik AR, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 1990; 18:1631-1635. https://doi.org/10.1093/nar/18.22.6531

16. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics 1994; 20:176-183. https://doi.org/10.1006/geno.1994.1151

17. Dangi B, Khurana-Kaul V, Kothari SL, Kachhwaha S. Micropropagtion of Terminalia bellerica from nodal explants of mature tree and assessment of genetic fidelity using ISSR and RAPD markers. Physiol Mol Biol Plants 2014; 20(4):509-516. https://doi.org/10.1007/s12298-014-0247-1

18. Goyal P, Kachhwaha S, Kothari SL. Micropropagation of Pithecellobium dulce (Roxb.) Benth-a multipurpose leguminous tree and assessment of genetic fidelity of micropropagated plants using molecular markers. Physiol Mol Biol Plants 2012; 18(2):169-176. https://doi.org/10.1007/s12298-012-0112-z

19. Ray T, Dutta I, Saha P, Das S, Roy SC. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tissue Organ Cult 2006; 85:11-21. https://doi.org/10.1007/s11240-005-9044-4

20. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962; 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

21. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Amer 1987; 19:11-15.

22. Tour J, Khalida K. In vitro regeneration of Salvia Santolinifolia. Pak J Bot 2014; 46(1):325-328.

23. Misic D, Grubisic D, Konjevic R. Micropropagation of Salvia brachyodon through nodal explants. Biol Plantarum 2006; 50:473-476. https://doi.org/10.1007/s10535-006-0074-5

24. Makunga NPM, Staden J. An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L. Plant Cell Tissue Organ Cult 2008; 92:63-72. https://doi.org/10.1007/s11240-007-9305-5

25. Zhong Xiong L, Cheng Chun L, Hong Wei Y, Qing Liang S, Wen Yi G, Hong Ming W, Dong Ming P. Micropagation technique of dwarf Salvia splendens. J Fujian Agr Univ 2001; 30:483-485.

26. Boldura OM, Radu F, Popescu S, Borozan A. Regeneration, Micropropagation, Callus Cultures and Somatic Embryogenesis of Common Sage (Salvia officinalis L.). Bulletin UASVM Horticulture 2010; 67(1).

27. Chen UC, Shiau YJ, Tsay HS, Hsia CN. Influence of cytokinin and ventilating container closure on shoot proliferation and hyperhydricity of in vitro Salvia miltiorriza culture. J Taiwan Agric Res 2005; 54:93-102.

28. Molina MS, Luis A, Luis J. In vitro mass propagation of Salvia canariensis L. by axillary shoots. Acta Soc Bot Polon 1997; 66(3-4): 351-354. https://doi.org/10.5586/asbp.1997.043

29. Echeverrigaray S, Carrer PR, Andrade LB. Micropropagation of Salvia guaranitica benth. through axillary shoot proliferation. Braz Arch Biol Technol 2010; 53(4): 883-888. https://doi.org/10.1590/S1516-89132010000400018

30. Fraternale D, Bisio A, Ricci D. Salvia jamensis J. Compton: In vitro regeneration of shoots through TDZ and BA. Plant Biosystems 2013; 147(3): 713-716. https://doi.org/10.1080/11263504.2013.788570

31. Skala E, Wysokinska H. In vitro regeneration of Salvia Nemorosa L. from shoot tips and leaf explants. In Vitro Cell Dev Biol-Plant 2004; 40:596-602. https://doi.org/10.1079/IVP2004580

32. Arikat NA, Jawad FM, Karama NS, Shibli RA. Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Scientia Horticulturae 2004; 100:193-202. https://doi.org/10.1016/j.scienta.2003.07.006

33. Kabir MH, Mamun ANK, Roy PK, Islam MR, Jahan MT, Talukder SU. In Vitro Mass Propagation of Salvia (Salvia splendens) from Nodal Explant. Nuclear Science and Applications 2014; 23(1&2):51-54.

34. Cuenca S, Amo-Marco JB. In vitro propagation of two Spanish endemic species of Salvia through bud proliferation. In Vitro Cell Dev Biol Plant 2000; 36:225-229. https://doi.org/10.1007/s11627-000-0042-2

35. Srivastava S, Jain R, Gupta PS, Singh J. Genetic stability of in vitro raised Sugarcane plantlets by RAPD markers Plant. Cell Biotechnol Molecul Biol 2006; 7(1):93-96.

36. Bhowmik S S, Kumaria S, Rao S R, Tandon P. High frequency plantlet regeneration from rhizomatous buds in Mantisia spathulata Schult. and Mantisia wengeri Fischer and analysis of genetic uniformity using RAPD markers. Indian J Ex Biol 2009; 47:140-146.

37. Peschke VM, Phillips RL, Gengenbach BG. Genetic and molecular analysis of tissue culture derived Ac elements. Theoret Appl Genet 1991; 82:121-12. https://doi.org/10.1007/BF00226202

38. Rani V, Raina SN. Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In Vitro Cell Dev Biol-Plant 2000; 36(5):319-330. https://doi.org/10.1007/s11627-000-0059-6

39. Saha S, Kader A, Sengupta C, Ghosh PD. In vitro propagation of Ocimum gratissimum L. (Lamiaceae) and its evaluation of genetic fidelity using RAPD marker. Am J Plant Sci 2012; 3:64-74. https://doi.org/10.4236/ajps.2012.31006

40. Saha S, Sengupta C, Ghosh P. Evaluation of the genetic fidelity of in vitro propagated Ocimum basilicum L. using RAPD and ISSR markers. J Crop Sci Biotech 2014; 17(4):281-287. https://doi.org/10.1007/s12892-014-0050-0

41. Prasad A, Shukla SP, Mathur A, Chanotiya CS, Mathur AK. Genetic fidelity of long-term micropropagated Lavandula officinalis Chaix.: an important aromatic medicinal plant. Plant Cell Tissue Organ Cult 2014; 1-10.

42. Bakhtiar Z, Mirjalili MH, Sonboli A, Farimani MM, Ayyari M. In vitro propagation, genetic and phytochemical assessment of Thymus persicus - a medicinally important source of pentacyclic triterpenoids. Biologia 2014; 69(5):594-603. https://doi.org/10.2478/s11756-014-0346-z

43. Samantaray S, Bishoyi AK, Maiti S. Plant regeneration from callus cultures of Vitex trifolia (Lamiales: Lamiaceae): A potential medicinal plant. Rev Biol Trop 2013; 61(3):1083-1094. https://doi.org/10.15517/rbt.v61i3.11902

44. Saha S, Dey ST, Adhikari S, Ghsoh PD. In vitro multiple shoot regeneration and analysis of genetic fidelity of Mentha piperita L. Bionature 2010; 30(2):71-81.

45. Al-Rawashdeh I M. Genetic variability in a medicinal plant Artemisia judaica using random amplified polymorphic DNA (RAPD) markers. Int J Agric Biol 2011; 13: 279-282.

46. Joshi P, Dhawan V. Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol Plant 2007; 51(1): 22-26. https://doi.org/10.1007/s10535-007-0005-0

47. Xu J, Wang Y, Zhang Y, Chai T. Rapid in vitro multiplication and ex vitro rooting of Malus zumi (Matsumura) Rehd. Acta Physiol Plant 2008; 30:129-132. https://doi.org/10.1007/s11738-007-0075-9

48. Lata H, Chandra S, Khan I, ElSohly MA. Assessment of genetic stability of micropropagated Cannabis sativa plants by ISSR markers. Planta Med 2010; 76:97-100. https://doi.org/10.1055/s-0029-1185945

Article Metrics

Similar Articles