Home >Current Issue

Volume: 6, Issue: 6, Nov-Dec, 2018
DOI: 10.7324/JABB.2018.60607

Research Article

Aroclor 1254 induced oxidative stress and histopathological changes in mice liver

Jalpa Raja, Shweta Pathak, Rahul Kundu

  Author Affiliations


Abstract

The toxicity of polychlorinated biphenyls in the living systems is associated with oxidative effects among others. In view of the involvement of antioxidant defense mechanisms in the detoxification of persistent organic pollutants, the present study was undertaken to assess the toxic effects of low dose (0.1 and 1 mg/kg/days) and long exposure (7, 14, 21, and 28 days) of Aroclor 1254 on glutathione content, specific activities of few antioxidant-related enzymes, and histopathological changes in the liver tissue of male mice. The obtained results indicated alterations in the enzyme activities of antioxidant-related defense mechanisms. The superoxide dismutase and glutathione peroxidase showed a significant increase in the specific activity, while, glutathione-S-transferase and reduced glutathione showed a significant duration dependent decreasing trend. Further, Aroclor 1254 induced oxidative stress might have caused the observed histopathological alterations, such as intravascular blood corpuscles accumulation, lipid granulomas, lipid deposition, cellular fibrosis, sinusoidal degeneration, and cellular aggregation in the liver tissue of mice. These pathophysiological changes in the liver tissue could be due to the generation of free radicals.

Keywords:

Polychlorinated biphenyls, Aroclor 1254, Antioxidant enzymes, Histopathology, Liver, Mice



Citation: Raja J, Pathak S, Kundu R. Aroclor 1254 induced oxidative stress and histopathological changes in mice liver. J App Biol Biotech. 2018;6(06):46-50. DOI: 10.7324/JABB.2018.60607


Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

1. Mariussen E, Fonnum F.The effect of polychlorinated biphenyls on the high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate, and GABA, in to rat brain synaptosomes.Toxicol 2001;159:11-21. https://doi.org/10.1016/S0300-483X(00)00374-7

2. Safe SH. Polychlorinated biphenyls (PCBs): Environmental impact, biochemical and toxic responses, and implications for risk assessment.Crit Rev Tox 1994;24:87–149. https://doi.org/10.3109/10408449409049308

3. Jacobson JL, Fein GG, Jacobson SW, Schwartz PM, Dowler JK. The transfer of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs) across the human placenta and into maternal milk.Am J Public Health 1984; 74:378–379. https://doi.org/10.2105/AJPH.74.4.378

4. Berghuis SA, Soechitram SD, Sauer PJ, Bos AF. Prenatal exposure to polychlorinated biphenyls and their hydroxylated metabolites is associated with neurological functioning in 3-month-old infants.Soc Toxicol 2014;142: 455-462. https://doi.org/10.1093/toxsci/kfu196

5. Bush B, Snow J, Koblintz R. Polychlorobiphenyl (PCB) congeners, p, p'- DDE, and hexachlorobenzene in maternal and fetal cord blood from mothers in Upstate New York.Arch Env Con Tox 1984;13:517–527. https://doi.org/10.1007/BF01056331

6. Lanting CI, Huisman M, Muskiet FA.Van der Paauw CG, Essed CE, Boersma ER. Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages.Pediatr Res 1998;44: 222–225. https://doi.org/10.1203/00006450-199808000-00014

7. Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ, Weisglas-Kuperus N. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age.J Pediatr 1999;134: 33-41. https://doi.org/10.1016/S0022-3476(99)70369-0

8. WHO Polychlorinated biphenyls: human health aspects, Geneva, Switzerland: World Health Organization. 2003: 1–64.

9. Foekema EM, Deerenberg CM, Murk AJ. Prolonged ELS test with the marine flatfish sole (Soleasolea) shows delayed toxic effects of previous exposure to PCB 126.Aqua Tox 2008;90: 197-203. https://doi.org/10.1016/j.aquatox.2008.08.015

10. Monosson E. Reproductive and developmental effects of PCBs in fish: a summary of laboratory and field studies.Rev Tox 1999/2000;3: 25-75.

11. Ross G. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotox Environ Saf 2004;59: 275-291. https://doi.org/10.1016/j.ecoenv.2004.06.003

12. Safe S. Clinical correlates of environmental endocrine disruptors.The Endo Metabo2005; 16: 139-144. https://doi.org/10.1016/j.tem.2005.03.004

13. Schell LM, Gallo MV. Relationships of putative endocrine disruptors to human sexual maturation and thyroid activity in youth.Phy Beha 2010;992: 46-253. https://doi.org/10.1016/j.physbeh.2009.09.015

14. Van Ginneken V, Palstra A, Leonards P, Nieveen M, van den Berg H, Flik G, Spanings T, Niemants verdriet P, Van den Thillart G, Murk A. PCBs and the energy cost of migration in the European eel (Anguilla anguilla L.). Aqua Tox 2009;92: 213-220. https://doi.org/10.1016/j.aquatox.2009.01.004

15. Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach.Sci Total Environ 2000;247:201–212. https://doi.org/10.1016/S0048-9697(99)00499-4

16. Sarasquete C, Segner H. Cytochrome P450 1A (CYP1A) in teleost fishes. A review of immune histochemical studies. In towards an integrative approach in environmental contamination and toxicology. Sci Total Environ 2000;247: 313–332. https://doi.org/10.1016/S0048-9697(99)00500-8

17. Tabrez S, Ahmad M.Oxidative stress mediated genotoxicity of wastewaters collected from two different stations in northern India.Muta Res 2011a;726: 15–20. https://doi.org/10.1016/j.mrgentox.2011.07.012

18. Tabrez S, Ahmad M.Mutagen city of industrial wastewaters collected from two different stations in northern India.JApp Toxi 2011b;31: 783–789.

19. Siddiqui AH, Tabrez S, Ahmad M. Validation of plant based bioassays for the toxicity testing of Indian waters.Envir Moni Asse 2011;179: 241–253. https://doi.org/10.1007/s10661-010-1732-9

20. Perez-Lopez M, Carme Novoa Valinas M, Julia Melgar-Riol. Glutathione S-transferase cytosolic isoforms as biomarkers of polychlorinated biphenyl (Arochlor-1254) experimental contamination in rainbow trout.Toxi Lett 2002;136: 97-106. https://doi.org/10.1016/S0378-4274(02)00284-9

21. Lai I, Chai Y, Simmons D, Luthe G, Coleman MC, Spitz D, Haschek WM, Ludewig G, Robertson LW. Acute Toxicity of 3, 3′, 4, 4′, 5-Pentachlorobiphenyl (PCB 126) in Male Sprague-Dawley Rats: Effects on Hepatic Oxidative Stress, Glutathione and Metals Status.Environ Int 2010;36: 918-923. https://doi.org/10.1016/j.envint.2009.11.002

22. Supriyo De, Somiranjan Ghosh, Raghunath Chatterjee, Y-Q Chen, Linda Moses, Akanchha Kesari, Eric Hoffman, Sisir KD. PCB Congener Specific Oxidative Stress Response by Microarray Analysis using Human Liver Cell Line.Environ. Int 2010;36: 907–917. https://doi.org/10.1016/j.envint.2010.05.011

23. Jiang JL, Shan ZJ, Xu WL, Wang XR, Zhou JY, Kong DY, Xu J. Microcystin-LR induced reactive oxygen species mediate cytoskeletal disruption and apoptosis of hepatocytes in Cyprinus carpioL.PLoS One2013; 8:12. https://doi.org/10.1371/journal.pone.0084768

24. Gutteridge JMC. Free radicals in disease processes: A compilation of cause and consequence.Free Radic Res Commu 1993;19: 141–1583. https://doi.org/10.3109/10715769309111598

25. Bhor VM, Raghuram N, Sivakami, S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin induced diabetic rats.The Inter J Biochem Cell Bio 2004; 36: 89-97. https://doi.org/10.1016/S1357-2725(03)00142-0

26. Rotruck JT, Pope AL, Ganther HE, Swanson AB. Selenium: Biochemical roles as a component of glutathione peroxidase.Sci 1973;179: 588-590. https://doi.org/10.1126/science.179.4073.588

27. Ellman GL. Tissue sulfhydryl groups.Arch Biochem Biophys 1959;82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

28. Habig WH, Pabst MJ, JakoWB. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation.J Biol Sci 1974;249: 7130-7139.

29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent.J Biol Chem 1951;193: 265-275.

30. Sokal RR, Rohlf FJ. Biometry. 1st Ed., W.H. Freeman and Company, San Francisco.1969;260.

31. Michael JD. The Toxicologist's Pocket Handbook, 2nd ed., Informa Healthcare USA, Inc., New York. 2008;44.

32. Pathak S, Kundu R. Effects of low concentrations of a Polychlorinated biphenyl, Aroclor 1254 on membrane bound ion dependent ATPases in mice liver.Ind J Exp Biol 2013;51: 477-480.

33. Pathak S, Pansuria H, Kundu R.Low concentration of PCB (Aroclor 1254) alter membrane -bound ion dependent ATPases in the hepatocytes cells of mice.IOSR J Env Sci Tox Food Tech 2013d:3: 86-90. https://doi.org/10.9790/2402-0318690

34. Lehmann WD, Levine JF, McHugh J. Polychlorinated biphenyls exposure causes gonadal atrophy and oxidative stress in Corbicula fluminea clams.Toxi Patho 2007;35: 356-365. https://doi.org/10.1080/01926230701230288

35. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 4th edn Oxford University Press, New York, 2007.

36. Twaroski TP, O'Brien ML, Larmonier N, Glauert HP, Robertson LW. Polychlorinated biphenyl-induced effects on metabolic enzymes, AP-1 binding, vitamin E, and oxidative stress in the rat liver.Toxicol Appl Pharmacol 2001;171: 85–93. https://doi.org/10.1006/taap.2000.9114

37. McLean MR, Twaroski TP, Robertson LW. Redox cycling of 2-(x′-mono, -di, -trichlorophenyl) - 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.Arch Biochem Biophys 2000; 376: 449–455. https://doi.org/10.1006/abbi.2000.1754

38. Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms.Mar Pollut Bull 2001;42: 656–666. https://doi.org/10.1016/S0025-326X(01)00060-1

39. Amado LL, Monserrat JM. Oxidative stress generation by microcystins in aquatic animals: why and how.Environ Int 2010;6: 226–235. https://doi.org/10.1016/j.envint.2009.10.010

40. Pallipoch S, Punsawad C, Koomhin P, Suwannalert P. Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress.BMC Com Alter Med 2014;14: 111. https://doi.org/10.1186/1472-6882-14-111

41. Cadenas E.Biochemistry of oxygen toxicity.Annu Rev Biochem 1989;58: 79–110. https://doi.org/10.1146/annurev.bi.58.070189.000455

42. Katar M, Ozugurlu AF, Ozyurt H, Benli I. "Evaluation of glutathione peroxidase and superoxide dismutase enzyme polymorphisms in celiac disease patients".Genet Mol Res 2014;13: 1030-7. https://doi.org/10.4238/2014.February.20.4

43. Shi Y, Jiang J, Shan Z, Bu Y, Deng Z, Cheng Y. Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR.Ecotoxi 2015; 24: 511–519. https://doi.org/10.1007/s10646-014-1399-z

44. Pflugmacher S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR.Aquat Toxicol 2004; 70: 169–178. https://doi.org/10.1016/j.aquatox.2004.06.010

45. Cazenave J, Nores ML, Miceli M, Dıaz MP, Wunderlin DA, Bistoni MA.Changes in the swimming activity and the glutathione-S-transferase activity of Jenynsia multidentata fed with microcystin-RR.Water Res 2008; 42: 1299–1307. https://doi.org/10.1016/j.watres.2007.09.025

46. Ding WX, Shen HM, Ong CN.Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes.Environ Health Per 2000;108: 605–609. https://doi.org/10.1289/ehp.00108605

47. Molina R, Moreno I, Pichardo S, Jos A, Moyano R, Monterde JG, Camean A. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromissp.) exposed sub chronically to microcystins from toxic cyanobacterial blooms under laboratory conditions.Toxi 2005; 46: 725–735. https://doi.org/10.1016/j.toxicon.2005.07.012

48. Malbrouck C, Kestemont P.Effects of microcystins on fish.Environ ToxicolChem 2006;25: 72–86. https://doi.org/10.1897/05-029R.1

49. Jiang JL, Gu XY, Song R, Zhang Q, Geng JJ, Wang XR, Yang LY.Time-dependent oxidative stress and histopathological alterations in Cyprinus carpio L. exposed to microcystin-LR.Ecotoxi 2011b;20: 1000–1009. https://doi.org/10.1007/s10646-011-0646-9

50. Roth JD.Temporal variability in arctic fox diet as reflected in stable carbon isotopes; the importance of sea ice.Oecolo 2002;133: 70-77. https://doi.org/10.1007/s00442-002-1004-7

Article Metrics