Home >Archive

Volume: 1, Issue: 1, May - June, 2013
DOI: 10.7324/JABB.2013.1102

Research Article

Molecular characteristics of prickly-pear cactus (Opuntia) based on internal transcribed spacer sequences (ITS) of Queretaro State-Mexico

M. C. C. P. de Lyra1, D. C. Santos2, C. Mondragon-Jacobo3, M.L.R.B. da Silva4, A. C. E.S Mergulhão5, E. Martínez-Romero6

  Author Affiliations


The prickly-pear cactus has great importance in the human feeding in Mexico and also for export of fruits. Around 8 000 years ago in Mexico, Opuntia was domesticated for human consumption took place. The high capacity of prickly-pear cactus for vegetative propagation has contributed to its wide-spread distribution, even to the extent of becoming a weed. In secondary diversification areas of introduction, the genotypic and phenotypic characteristics of Opuntia were modified. Studies using biosystematics and morphology demonstrated a relationship with other Opuntoideae. The internal transcribed spacer region nuclear ribosomal DNA was sequenced in seventeen species for phylogeny. These findings indicate that the ITS region in Opuntoideae should be further exploted as a promising source of nuclear phylogeny markers. Opuntia ficus-indica (L. Mill),, Opuntia robusta, Opuntia albicarpa, Opuntia streptacantha they are not well characterized in this study, them of they contain in way its would arbitrate. The need of larger studies with molecular and morphologic markers in these species is very important.. The results of phylogeny analysis of Opuntia species suggests a new revision in the taxonomy of these plants sees that, the presence of hybrid in this study demonstrates the difficulty of characterizing in a safe way the species of the family Opuntiodeae.


Opuntioideae, Taxonomy, Hybrid, molecular markers, prickly-pear cactus


Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Russell CE, Felker P. The prickly pears (Opuntia spp., Cactaceae): a source of human and animal food in semiarid regions. Economic Botany. 1987; 41: 433-445. https://doi.org/10.1007/BF02859062

2. Kluge M, Ting IP. Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Berlin, Springer-Verlag. 1978. https://doi.org/10.1007/978-3-642-67038-1

3. Ostolaza C. Cactus y etnobotánica. Quepo. 1994; 8:79-86. Fig. 1. Opuntia group relationship inferred from Tamura-Nei tree based on ITS sequences using Neighbor-Joining (NJ) with 1000 bootstrap tests. Lyra et al. / Journal of Applied Biology & Biotechnology 1 (01); 2013: 006-010

4. Luna-Paez A, Valadez-Moctezuma 1E, Barrientos-Priego AF, Gallegos-Vázquez C. Caracterizaci\ón de Opuntia spp. Mediante Semilla con marcadores RAPD e ISSR y su posible uso para diferenciaci\ón. Journal of the Professional Association for Cactus Development. 2007; 9:43-59.

5. Flores C. Producci\ón, Industrializaci\ón, y comercializaci\ón de Nopalitos. Centro de invstigaciones econ\ómicas sociales y tecnol\ógicas de la agroindustria y la agricultura mundial. Universidad Aut\ónoma de Chapingo, Mexico, 2001, 27p.

6. Reys-Ag\üero JA, Aguirre-Rivera JR. Hernández HM. Systematic note and detailed description of Opuntia ficus-indica (L.) Mill (Cactaceae) Agrociencia. 2005; 39(4): 395-908.

7. Benson LH. The cacti of the United States and Canada. Stanford University Press, Stanford, California, USA. 1982.

8. Mandujano, M. C., C. Monta-a, I. M\éndez, and J. Golubov. The relative contributions of sexual reproduction and propagation in Opuntia rastrera from two habitats in the Chihuahuan Desert. Journal of Ecology.1998; 86:911–921. https://doi.org/10.1046/j.1365-2745.1998.00308.x

9. Casas A, Caballero J, Mapes C, Zárate S. Manejo de la vegetaci\ón, domesticaci\ón de plantas y origen de la agricultura en Mesoam\érica. Boletín de la Sociedad Botánica de M\éxico 1997; 61: 31-47.

10. Nobel PS. Cacti: biology and uses. University of California, Berkeley, California, USA 2002

11. Nobel PS, De La Barrera E, Beilman DW, Doherty JH, Zutta BR. Temperature limitations for cultivation of edible cacti in California. Madro-o. 2002; 49: 228-236.

12. Casas A, Barbera G. Mesoamerican domestication and diffusion. In: P. S. Nobel [ed.], Cacti: biology and uses, University of California, Berkeley, California, USA 2002. p.143–162.

13. Griffith MP. A new Chihuahuan Desert prickly pear, Opuntia x rooneyi. Cactus and Succulent Journal (U.S.) 2001; 73: 307-310

14. Griffith MP. Experimental hybridization in northern Chihuahuan desert region Opuntia, Rancho Santa Ana Botanic Garden 2001; 20:37-42.

15. Griffith MP. Using molecular data to elucidate reticulate evolution in Opuntia. Madro-o. 2003; 50: 162-169

16. Mondragon-Jacobo C. Cactus Pear Domestication and Breeding. In: J. Janick, Plant Breeding Reviews. 2000; 20: 135-165.

17. Pimienta-Barrios E, Mu-oz-Urias A. Domestication of Opuntias and cultivated varieties. In: Barbera, G., P. Inglese and B.E. Pimienta (Eds.), Agroecology, cultivation and uses of cactus pear, 1995. p 58-63.

18. Grant V, Grant AK, Hurd DP. Pollination of Opuntia lindheimeri and related species. Plant Systematics and Evolution. 1979;132: 313-320. https://doi.org/10.1007/BF00982393

19. Andersen JR, L\übberstedt T. Functional markers in plants. Trends in Plant Sciences. 2003; 8: 554-560. https://doi.org/10.1016/j.tplants.2003.09.010

20. Cai Y-f, Li S-w, Liu Y, QuanS, Chen S, Xie Y-f, Jiang H-z, Wei E-z, Yin N-w, Wang, L, Zhang R, Huang C-l, He X-H, Jiang M-f.Molecular phylogeny of Ranunculaceae based on internal transcribed spacer sequences. African Journal of Biotechnology. 2009; 8: 5215-5224.

21. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics. In. PCR protocols, a guide to methods, and, applications, eds. M.A Innis, D.H. Gelfand, J.J. Sninsky, and, T.J. White. San Diego: Academic Press. 1990. p.315-322.

22. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987; 4:406-425.

23. Takezaki N, Rzhetsky A. Nei M. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution. 2004;12:823-833.

24. Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783-791 https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

25. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution. 1993; 10:512- 526.

26. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007; 24:1596-1599. https://doi.org/10.1093/molbev/msm092

27. Baldwin BG. Phylogenetic utility of the internal transcribed spacersos nuclear ribosomal DNA in plants: An Exemple frm the composite. Molecular Phylogenetics and Evolution. 1992;1:3-16. https://doi.org/10.1016/1055-7903(92)90030-K

28. Kumar LS. DNA markers in plant improvement: a overview. Biotecnology advances. 1999;17: 143:182.

29. Lim CC, Rao V. DNA fingerprinting of oil palm-choice of tissues. J. of oil Palm Research. 2005; 17:136-144.

Article Metrics