Home >Current Issue

Volume: 6, Issue: 5, Sep-Oct, 2018
DOI: 10.7324/JABB.2018.60502

Research Article

Biosynthesis, characterization and antibacterial activity of silver nanoparticles from Aspergillus awamori

Vishwanatha T1, Keshavamurthy M2, Mallappa M3, Murugendrappa MV4 , Nadaf YF5, Siddalingeshwara KG6, Dhulappa A1

  Author Affiliations


Microbial nanoparticles (NPs) have become the subject of immense research interest in the recent past due to their wide range of applications as effective antimicrobial agents, drug delivery systems, gene delivery, diagnostic agents in imaging diseases, and consumer products among others. The present study emphasizes on the synthesis of metallic silver NPs (SNPs) from cell-free supernatant of Aspergillus awamori strain KGSR12. The phase purity, composition, size, and shape of the as-synthesized NPs were characterized using various analytic spectroscopic techniques including X-ray diffraction, scanning electron microscope (SEM), ultraviolet-visible, and Fourier transform-infrared spectroscopy. Based on the SEM analysis, the particles are uniformly distributed, and size is estimated to be 40–50 nm. Antibacterial activity of NPs against significant human pathogens was conferred with well diffusion assay, and it reveals the strains of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacillus cereus are susceptible to synthesized SNPs that confirm the antibacterial activity of SNPs. Thus, the study concludes with the biogenic and eco-friendly route for synthesizing SNPs with antibacterial activity against clinically important pathogens and attributes growing interest on fungi as an emerging source for the synthesis of NPs.


Silver nanoparticles, Aspergillus awamori, Bioreduction, Antibacterial activity, Fourier transform-infrared spectroscopy.

Citation: Vishwanatha T, Keshavamurthy M, Mallappa M, Murugendrappa M V, Nadaf Y F, Siddalingeshwara K G and Dhulappa A. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles from Aspergillus awamori. J. App Biol Biotech. 2018;6(05): 12-16.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Keshavamurthy M, Srinath B. S, Ravishankar Rai V. Phytochemicals mediated green synthesis of gold nanoparticles using Pterocarpus santalinus L. (Red Sanders) bark extract and their antimicrobial properties. Particulate Science and Technology- An International journal. 2017;

2. Bhattacharya D., Gupt, R. K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005; 25, 199–204. https://doi.org/10.1080/07388550500361994

3. Mostafa M.H. Khalil, Eman H. Ismail, Khaled Z. El-Baghdady, Doaa Mohamed. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 2013.

4. Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., Van de Meent, D., Dekkers, S., deJong, W.H., Van Zijverden, M., Sips, A.J.A.M., Geertsma, R.E. Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009; 3, 109. https://doi.org/10.1080/17435390902725914

5. Li, W.R., Xie, X.B., Shi, Q.S., Duan, S.S., Ou Yang, Y.S., Chen, Y. B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011; 24, 135–141. https://doi.org/10.1007/s10534-010-9381-6

6. Baker, S., Rakshith, D., Kavitha, K.S., Santosh, P., Kavitha, H.U., Rao, Y., Satish, S. Plants emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts 3, 2013; 111–117.

7. Akl M. Awwad, Nida M. Salem and Amany O. Abdeen. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 2013; 4:29. https://doi.org/10.1186/2228-5547-4-29

8. Ahmad A., Mukherjee P, Senapati S., Mandal D., Khan M. I., Kumar R., Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B.Biointerfaces, 2003; 28(4): 313-318. https://doi.org/10.1016/S0927-7765(02)00174-1

9. Bhainsa K. C, D'Souza S. F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B.Biointerfaces, 2006; 47(2):160-164. https://doi.org/10.1016/j.colsurfb.2005.11.026

10. Basavaraja S, Balaji S. D, Lagashetty A, Rajasab A. H, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat. Res. Bull., 2008; 43(5):1164-1170. https://doi.org/10.1016/j.materresbull.2007.06.020

11. Gade A. K., Bonde P, Ingle A. P., Marcato P. D., Durán N., Rai M. K. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenerg. 2008; 2(3): 243-247. https://doi.org/10.1166/jbmb.2008.401

12. Balaji D. S, Basavaraja S, Deshpande R, Mahesh D. B, Prabhakar B. K, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B. Biointerfaces, 2009; 68(1): 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022

13. Shaligram, N. S, Bule M, Bhambure R, Singhal R. S, Singh S. K., Szakacs G, Pandey A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc. Biochem., 2009; 44(8): 939-943. https://doi.org/10.1016/j.procbio.2009.04.009

14. Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond). 2009; 5(1): 33-40. https://doi.org/10.2217/nnm.09.77

15. Radika Pilli and Siddalingeshwara K.G. Rapid Confirmation and Molecular Identification of Alkaline Protease Producing Aspergillus awamori through Submerged Fermentation. Int.J.Curr.Microbiol.App.Sci. 2016; 5(10): 1114-1124. https://doi.org/10.20546/ijcmas.2016.510.117

16. Shankar S S, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004; 275(2): 496-502. https://doi.org/10.1016/j.jcis.2004.03.003

17. Saifuddin N, Wong C. W, Yasumira A. A. N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry 2009; 6: 61-70. https://doi.org/10.1155/2009/734264

18. Rajeshkumar Shanmugam, Malarkodi Chelladurai, Gnanadhas Gnanajobitha, Annadurai Gurusamy. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoide and its characterization. Journal of Nanostructure in Chemistry, 2013; 3:44 https://doi.org/10.1186/2193-8865-3-44

19. Ozlem Altintas Yildirim and Caner Durucan. Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles. Journal of Materials Research. 2012; 27. 1452-1461. https://doi.org/10.1557/jmr.2012.58

20. Krishna R. H, Nagabhushana B. M, Nagabhushana H, et al. The Journal of Physical Chemistry C. 2013; 117: 1915. Doi:10.1021/jp309684b. https://doi.org/10.1021/jp309684b

21. Magudapathy P, Gangopadhyay P, Panigrahi B. K, Nair K. G. M, Dhara S. Phy B. 2001; 299:142–146. doi: 10.1016/S0921-4526(00)00580-9 https://doi.org/10.1016/S0921-4526(00)00580-9

22. Bindhu M. R., Umadevi M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta Part A. 2013; 101, 184–190. https://doi.org/10.1016/j.saa.2012.09.031

23. Vishwanatha T., Keshavamurthy M, Siddalingeshwara K. G., Kavyashree D. In Vitro Efficacy of Lytic Bacteriophage against Antibiotic Resistant Bacterial Pathogens. Int.J.Curr.Microbiol.App.Sci. 2016; 5(2):642-648. https://doi.org/10.20546/ijcmas.2016.502.072

Article Metrics