Home >Archive

Volume: 6, Issue: 4, July-August, 2018
DOI: 10.7324/JABB.2018.60406

Research Article

Isolation and characterization of denitrifying halophilic bacteria from Bahr Al-Milh Salt Lake, Karbala, Iraq

Maryam Hosseini, Mushtaq T Sh. Al-Rubaye, Javad Fakhari, Fateme Babaha

  Author Affiliations


Nitrogen fixation is considered as a significant biological process, which is important in agricultural and environmental implications. Herein denitrifying bacteria from Bahr Al-Milh Salt Lake, Karbala, Iraq, was reported using molecular and phenotypical characteristics. Samples were collected from eastern parts of the Bahr Al-Milh. The strains were grown in different saline concentrations of nutrient broth (2.5–22.5%). Nitrate and nitrite reduction activities were assessed for all the isolates. Molecular analysis was performed by BLAST alignment and MEGA7 software. The 16S rRNA sequences of newly found strains were submitted in the GenBank database. 218 strains were isolated, 76.6% of which were nitrate reductase and 25.5% nitrate-nitrite reductase (NiR) positive strains. 68% slightly and 32% moderately halophilic bacteria were found. Isolates with nitrite reduction activity belonged to five genera including Bacillus , Halobacillus , Idiomarina, Oceanobacillus, and Virgibacillus . The isolates with the ability of producing nitrate-NiR consisted of bacteria in genera Halobacillus and Halomonas . Apart from industrial and biotechnological applications, the present information might be useful to fertilize the saline soil for agricultural aims. The isolated strains could be considered as a source of halotolerant enzymes in agriculture and environmental implications in hypersaline areas. To the best of our knowledge, this is the first microbiological study on halophilic bacteria from Bahr Al-Milh Salt Lake.


Halophiles, Nitrate reductase, Nitrite reductase, Screening.

Citation: Hosseini M, Al-Rubaye MTS, Fakhari J, Babaha F. Isolation and characterization of denitrifying halophilic bacteria from Bahr Al-Milh Salt Lake, Karbala, Iraq. J App Biol Biotech. 2018;6(04):32-36. DOI: 10.7324/JABB.2018.60406.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. de Lourdes Moreno M, P\érez D, García MT, Mellado E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life (Basel) 2013;3(1):38-51. https://doi.org/10.3390/life3010038

2. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998;62:504-44.

3. Andrei AŞ, Banciu HL, Oren A. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 2012;330(1):1-9. https://doi.org/10.1111/j.1574-6968.2012.02526.x

4. Bonete MJ, Martínez-Espinosa RM. Enzymes from Halophilic Archaea: Open Questions. Halophiles and Hypersaline Environments. In: Ventosa A, Oren A, Ma Y, editors. Springer-Verlag Berlin Heidelberg. Inc; 2011, p. 359-71.

5. Sánchez-Porro C, Martín S, Mellado E, Ventosa A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology 2003;94(2):295-300. https://doi.org/10.1046/j.1365-2672.2003.01834.x

6. Zahran HH, Ahmad MS, Afkar EA. Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. Journal of Basic Microbiology 1995;35(4):269-75. https://doi.org/10.1002/jobm.3620350412

7. Cabello P, Roldán MD, Moreno-Vivián C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 2004;150(Pt 11):3527-46. https://doi.org/10.1099/mic.0.27303-0

8. Peoples MB, Herridge DF, Ladha JK. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant and Soil 1995;174(1):3–28. https://doi.org/10.1007/BF00032239

9. Lin JT, Stewart V. Nitrate assimilation by bacteria. Adv Microb Physiol 1998; 39: 1-30.

10. Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999;181(21):6573-84.

11. Martı́nez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterization. FEMS Microbiol Lett 2001;204(2):381-5. https://doi.org/10.1016/S0378-1097(01)00431-1

12. Rahi KA, Halihan T. Changes in the salinity of the Euphrates River system in Iraq. Regional Environmental Change 2010;10(1):27-35. https://doi.org/10.1007/s10113-009-0083-y

13. Kornij\ów R, Szczerbowski JA, Krzywosz T, Bartel R. The macrozoobenthos of the Iraqi lakes Tharthar, Habbaniya and Razzazah. Archives of Polish Fisheries 2011;9(1):127-45.

14. Salman JM, Nasser AJ. Variation of some physicochemical parameters and biodiversity of gastropods species in Euphrates River, Iraq. International Journal of Environmental Science and Development 2013;5(3):328-31. https://doi.org/10.7763/IJESD.2014.V5.502

15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971;20(4):406-16. https://doi.org/10.2307/2412116

16. Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk HP, Hejazi MA, Hejazi MS. Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Mikrobiologiia 2011;80(6):826-33. https://doi.org/10.1134/S0026261711060191

17. BØver K, Henriksen SD. Minimal Standards for Description of New Taxa Within the Genera Moraxella and Acinetobacter: Proposal by the Subcommittee on Moraxella and Allied Bacteria. IJSEM 1976;26:92-6.

18. Bradshaw LJ. Laboratory Microbiology. 4th ed. San Diego, California: Fort Worth, TX: Saunders College Publishing; 1992.

19. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178(4535):703-4. https://doi.org/10.1038/178703a0

20. Ventosa A, Quesada E, Rodrı´guez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 1982;128: 1959-68. https://doi.org/10.1099/00221287-128-9-1959

21. Al-Rubaye MTSh, Al-Musawi MHJ, Fakhari J, Hosseini M. Screening and Characterization of Halophilic Bacteria with Industrial Enzymes from Salt Lake Razazah, Karbala, Iraq. Biosci Biotech Res Asia 2017; 14(2): 531-539. https://doi.org/10.13005/bbra/2476

22. Hosseini M, Babaha F, Al-Rubaye MTSh, Fakhari J, Al-MusawiMHJ. Urease-Producing Halophilic Bacteria Isolated from Bahr Al-Milh Salt Lake, Karbala, Iraq. Journal of Pure and Applied Microbiology 2017;11(2):711-716. https://doi.org/10.22207/JPAM.11.2.09

23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 60. Molecular Biology Evolution 2013;30(12):2725-9. https://doi.org/10.1093/molbev/mst197

24. Saitou N, Nei M. The neighbor joining method: a new method for reconstructing phylogenetic trees. Molecular Biology Evolution 1987;4(4):406-25.

25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 1981;17(6):368-76. https://doi.org/10.1007/BF01734359

26. Oren A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology 2002;39(1):1-7. https://doi.org/10.1111/j.1574-6941.2002.tb00900.x

27. Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, C.Pedros-Alio C. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiology Ecology 2004;48(1):57-69. https://doi.org/10.1016/j.femsec.2003.12.013

28. Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia JL. Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. International Journal of Systematic Bacteriology 1994;44(3):534-40. https://doi.org/10.1099/00207713-44-3-534

29. Rohban R, Amoozegar MA, Ventosa A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 2009;36(3):333-40. https://doi.org/10.1007/s10295-008-0500-0

30. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, et al. Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Annals of Microbiology 2015;65(2):611-629. https://doi.org/10.1007/s13213-014-0897-9

31. Hosseini M, Fakhari J, Al-Rubaye MTSh, Ansari Dezfouli E. Screening of Halophilic Bacteria Able to Degrade Crude Oil Contamination from Alborz Oil Field, Qom, Iran. Journal of Pure and Applied Microbiology 2017;11(2):773-778 https://doi.org/10.22207/JPAM.11.2.16

32. Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, et al. Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology. Microbial Ecology 2006;51(1):65-82. https://doi.org/10.1007/s00248-005-0228-6

33. Al-Rubaye MTSh, Fakhari J, Hosseini M, Bakhtiari A. Salicola mahdashtensis sp. nov., an extremely halophilic bacterium isolated from Mahdasht saline spring in Iran. Microbiology 2017; 86(2): 213–7. https://doi.org/10.1134/S0026261717020035

34. Li CN, Lu XW, Yu B. Research on simultaneous nitrification and denitrifying. Water & Wastewater Engineering 2001;27:22-4.

35. Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ. Peyton BM. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 1999;22(4):551-8. https://doi.org/10.1016/S0723-2020(99)80008-3

36. Obuekwe CO, Westlake DW, Cook FD. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can J Microbiol 1981;27(7):692-7. https://doi.org/10.1139/m81-107

37. Zhou Q, Takenaka Sh, Murakami Sh, Seesuriyachan P, Kuntiya A, Aoki K. Screening and Characterization of Bacteria That Can Utilize Ammonium and Nitrate Ions Simultaneously under Controlled Cultural Conditions. Journal of Bioscience and Bioengineering 2007;103(2):185-91. https://doi.org/10.1263/jbb.103.185

Article Metrics

Similar Articles