Home >Archive

Volume: 6, Issue: 3, May-June, 2018
DOI: 10.7324/JABB.2018.60301

Research Article

Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal

Punam Yadav1 & 2, Suresh Korpole3, Gandham S Prasad3, Girish Sahni3 , Jyoti Maharjan1, Lakshmaiah Sreerama4, Tribikram Bhattarai2

  Author Affiliations


Abstract

The present study was conducted to identify and characterize the thermophilic bacteria isolated from five hot springs, namely, Sinkosh, Singha, Bhurung, Ratopani, and Paudwar located in Myagdi district, Nepal, using phenotypic and genotypic methods. The hot spring has temperature 42–62°C and pH 6.5–6.8. Isolation of thermophiles was done using simple enriched nutrient broth media at 60°C. Selected strains were screened for thermostable enzymes; cellulase, hemicellulase, amylase, protease, gelatinase, and lipase using substrates carboxymethylcellulose, xylan, soluble starch, casein, gelatin, and Tween (20, 40, 60, or 80), respectively. The bacteria were grouped into 16 groups based on morphological and biochemical characteristics. 16S rRNA sequence analysis of 16 isolates and phylogenetic analysis showed a cluster of five distinct taxonomic groups. The groups were identified as genus Anoxybacillus, Aeribacillus, Brevibacillus, Bacillus, and Geobacillus, based on ≥95% similarity with reference strains. This is the first study that reports Anoxybacillus sp., Brevibacillus sp., and Aeribacillus sp. from the hot springs of Nepal.

Keywords:

Thermostable enzymes, Amylase, Cellulase, Xylanase, Hot springs, Biochemical, Anoxybacillus.



Citation: Yadav P, Korpole S, Prasad GS, Sahni G, Maharjan J, Sreerama L, Bhattarai T. Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal. J App Biol Biotech. 2018;6(03):1-8.


Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

1. Averhoff B, M\üller V. Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Research in microbiology. 2010;161(6):506-14. https://doi.org/10.1016/j.resmic.2010.05.006

2. Meyer‐Dombard D, Shock E, Amend J. Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology. 2005;3(3):211-27. https://doi.org/10.1111/j.1472-4669.2005.00052.x

3. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, et al. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Brazilian Journal of Microbiology. 2015;46(2):443-53. https://doi.org/10.1590/S1517-838246220140219

4. Badhai J, Ghosh TS, Das SK. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Frontiers in microbiology. 2015;6. https://doi.org/10.3389/fmicb.2015.01166

5. Bisht SS, Panda AK. Biochemical characterization and 16S rRNA sequencing of few lipase-producing thermophilic bacteria from Taptapani hot water spring, Orissa, India. Biotechnology research international. 2011;2011.

6. Gray KA, Zhao L, Emptage M. Bioethanol. Current opinion in chemical biology. 2006;10(2):141-6. https://doi.org/10.1016/j.cbpa.2006.02.035

7. Wyman CE. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnology progress. 2003;19(2):254-62. https://doi.org/10.1021/bp025654l

8. Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied microbiology and biotechnology. 2001;56(1):17-34. https://doi.org/10.1007/s002530100624

9. Rabinovich M. ethanol production from materials containing cellulose: the potential of approaches developed in Russia. Prikladnaia biokhimiia i mikrobiologiia. 2006;42(1):5-32.

10. Ranjit M, editor Geothermal energy update of Nepal. Proceedings of the 2010 World Geothermal Congress; 2010.

11. Yadav RKP, Timilsina A, Yadawa RK, Pokhrel CP. Potential Cellulosic Ethanol Production from Organic Residues of Agro-Based Industries in Nepal. ISRN Renewable Energy. 2014;2014:6. https://doi.org/10.1155/2014/305695

12. Akmar HN, Asma I, Venugopal B, Latha LY, Sasidharan S. Identification of appropriate sample and culture method for isolation of new thermophilic bacteria from hot spring. African Journal of Microbiology Research. 2011;5(3):217-21.

13. Silva Pd, Nahas E. Bacterial diversity in soil in response to different plans, phosphate fertilizers and liming. Brazilian Journal of Microbiology. 2002;33:304-10. https://doi.org/10.1590/S1517-83822002000400005

14. Mc Faddin. J.F. Pruebas bioquimicas para la identificacion de bacterias de importancia clinica. . Panamericana, Buenos Aires. 1984: 11-301.

15. Abd-Elhalem BT, El-Sawy M, Gamal RF, Abou-Taleb KA. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Annals of Agricultural Sciences. 2015;60(2):193-202. https://doi.org/10.1016/j.aoas.2015.06.001

16. Zhou M-Y, Chen X-L, Zhao H-L, Dang H-Y, Luan X-W, Zhang X-Y, et al. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microbial ecology. 2009;58(3):582-90. https://doi.org/10.1007/s00248-009-9506-z

17. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram's iodine. Current microbiology. 2008;57(5):503-7. https://doi.org/10.1007/s00284-008-9276-8

18. Singh AK, Tripathi B, Sahay H, Singh R, Kaushik R, Saxena A, et al. Biochemical and molecular characterization of thermo-alkali tolerant xylanase producing bacteria from thermal springs of Manikaran. Indian journal of microbiology. 2010;50:2-9. https://doi.org/10.1007/s12088-010-0071-4

19. Tanasupawat S, Phoottosavako M, Keeratipibul S. Characterization and lipolytic activity of lactic acid bacteria isolated from Thai fermented meat. 2015.

20. Whaley D, Dowell V, Wanderlinder L, Lombard G. Gelatin agar medium for detecting gelatinase production by anaerobic bacteria. Journal of clinical microbiology. 1982;16(2):224-9.

21. Padilha I, Carvalho L, Dias P, Grisi T, Silva F, Santos S, et al. Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. Growing on sugarcane bagasse in submerged fermentation. Brazilian Journal of Chemical Engineering. 2015;32(1):35-42. https://doi.org/10.1590/0104-6632.20150321s00003298

22. Assareh R, Zahiri HS, Noghabi KA, Aminzadeh S. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresource technology. 2012;120:99-105. https://doi.org/10.1016/j.biortech.2012.06.027

23. Yassien MA-M, Jiman-Fatani AAM, Asfour HZ. Production, purification and characterization of cellulase from Streptomyces sp. African Journal of Microbiology Research. 2014;8(4):348-54. https://doi.org/10.5897/AJMR2013.6500

24. Bhalla A, Bischoff KM, Sani RK. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WsUcF1 utilizing lignocellulosic biomass. Frontiers in bioengineering and biotechnology. 2015;3. https://doi.org/10.3389/fbioe.2015.00084

25. Rasooli I, Astaneh SDA, Borna H, Barchini KA. A thermostable \a-amylase producing natural variant of Bacillus spp. isolated from soil in Iran. Am J Agric Biol Sci. 2008;3(3):591-6. https://doi.org/10.3844/ajabssp.2008.591.596

26. Lo Y-C, Saratale GD, Chen W-M, Bai M-D, Chang J-S. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme and Microbial Technology. 2009;44(6):417-25. https://doi.org/10.1016/j.enzmictec.2009.03.002

27. Bond PL, Smriga SP, Banfield JF. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology. 2000;66(9):3842-9. https://doi.org/10.1128/AEM.66.9.3842-3849.2000

28. Singh PK, Kumari A, Chawla N, Pinnaka AK, Korpole S. Rhodococcus lactis sp. nov., an actinobacterium isolated from sludge of a dairy waste treatment plant. International journal of systematic and evolutionary microbiology. 2015;65(11):4215-20. https://doi.org/10.1099/ijsem.0.000565

29. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International journal of systematic and evolutionary microbiology. 2012;62(3):716-21. https://doi.org/10.1099/ijs.0.038075-0

30. Kamble RD, Jadhav AR. Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. International Journal of Microbiology. 2012;2012.

31. Harish Adhikari, Sangam Ghimire, YK BK. Enzymatic screening and molecular characterization of thermophilic bacterial strains isolated from hotspring of tatopani, bhurung, nepal. International Journal of Applied Sciences. 2015;3:392-7. https://doi.org/10.3126/ijasbt.v3i3.12724

32. Kristjansson JK. Thermophilic organisms as sources of thermostable enzymes. Trends in Biotechnology. 1989;7(12):349-53. https://doi.org/10.1016/0167-7799(89)90035-8

33. Liang Y, Feng Z, Yesuf J, Blackburn JW. Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Applied biochemistry and biotechnology. 2010;160(6):1841-52. https://doi.org/10.1007/s12010-009-8677-x

34. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, et al. Recent discoveries and applications of Anoxybacillus. Applied microbiology and biotechnology. 2013;97(4):1475-88. https://doi.org/10.1007/s00253-012-4663-2

35. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews. 2002;66(3):506-77. https://doi.org/10.1128/MMBR.66.3.506-577.2002

36. Logan N, Berkeley R. Identification of Bacillus strains using the API system. Microbiology. 1984;130(7):1871-82. https://doi.org/10.1099/00221287-130-7-1871

37. Yohandini H. Isolation and Phylogenetic Analysis of Thermophile Community Within Tanjung Sakti Hot Spring, South Sumatera, Indonesia. HAYATI Journal of Biosciences. 2015;22(3):143-8. https://doi.org/10.1016/j.hjb.2015.10.006

38. Aditiawati P, Yohandini H, Fida Madayanti A. Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, west Java-Indonesia. The open microbiology journal. 2009;3:58. https://doi.org/10.2174/1874285800903010058

39. Cihan AC, Tekin N, Ozcan B, Cokmus C. The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey. Brazilian Journal of Microbiology. 2012;43(1):309-24. https://doi.org/10.1590/S1517-83822012000100037

40. Baker GC, Gaffar S, Cowan DA, Suharto AR. Bacterial community analysis of Indonesian hot springs. FEMS Microbiology Letters. 2001;200(1):103-9. https://doi.org/10.1111/j.1574-6968.2001.tb10700.x

41. Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial cell factories. 2007;6(1):9. https://doi.org/10.1186/1475-2859-6-9

42. Paes G, O'Donohue MJ. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. Journal of biotechnology. 2006;125(3):338-50. https://doi.org/10.1016/j.jbiotec.2006.03.025

43. Yan S, Wu G. Secretory pathway of cellulase: a mini-review. Biotechnology for biofuels. 2013;6(1):177. https://doi.org/10.1186/1754-6834-6-177

44. Kahar UM, Chan K-G, Salleh MM, Hii SM, Goh KM. A high molecular-mass Anoxybacillus sp. SK3-4 amylopullulanase: characterization and its relationship in carbohydrate utilization. International journal of molecular sciences. 2013;14(6):11302-18. https://doi.org/10.3390/ijms140611302

45. Tsuda T, Sasaki Y, Kawashima R. Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium on Ruminant Physiology: Academic Press; 2012.

46. Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM, Hughes SR, et al. Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. Journal of industrial microbiology & biotechnology. 2009;36(4):585. https://doi.org/10.1007/s10295-009-0528-9

47. Logan NA, Forsyth G, Lebbe L, Goris J, Heyndrickx M, Balcaen A, et al. Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov. International journal of systematic and evolutionary microbiology. 2002;52(3):953-66.

Article Metrics