Home >Archive

Volume: 5, Issue: 5, Sep-Oct, 2017
DOI: 10.7324/JABB.2017.50501

Research Article

Rational Design of Duplex Specific Nuclease for One-Step Isothermal Viral RNA Detection

Elizabeth M. Wurtzler, Ranjani Ravi, Vikram Kapoor, David Wendell

  Author Affiliations


RNA viruses are a potent human adversary, evidenced by several global pandemics including the Ebolavirus in West Africa, the emerging Zika virus, and outbreaks of new Influenza strains and Norwalk virus in the food supply and cruise ships. Despite the virulence of these pathogens, there remains a significant limitation for detecting these viruses in a fast, accurate and cost effective manner. To meet this need we present a modified form of the duplex specific nuclease enzyme from the Paralithodes camtschaticus crab capable of generating an RNA-based signal amplification in a fraction of the time required for standard RT-qPCR. The applicability of this enzyme is demonstrated in an assay for Norwalk virus detection with a lower limit of ~100 viral copies per liter of environmental water.


Duplex specific nuclease; norovirus; viral detection; RNA; RNA detection; environmental water.

Citation: Wurtzler EM, Ravi R, Kapoor V, Wendell D. Rational Design of Duplex Specific Nuclease for One-Step Isothermal Viral RNA Detection. J App Biol Biotech. 2017; 5 (05): 1-10.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. D. R. Walt. Miniature Analytical Methods for Medical Diagnostics. Science. 2005; 308(5719): 217-219.

2. D. A. Relman. The search for unrecognized pathogens. Science. 1999; 284(5418): 1308-1310.

3. J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner, J.-P. Brunet, A. Subramanian, K. N. Ross, M. Reich, H. Hieronymus, G. Wei, S. A. Armstrong, S. J. Haggarty, P. A. Clemons, R. Wei, S. A. Carr, E. S. Lander,T. R. Golub. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science. 2006; 313(5795): 1929-1935.

4. J. Drews. Drug Discovery: A Historical Perspective. Science. 2000; 287(5460): 1960-1964.

5. E. DeLong, G. Wickham,N. Pace. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989; 243(4896): 1360-1363.

6. M. Mandal,R. R. Breaker. Gene regulation by riboswitches. Nat Rev Mol Cell Biol. 2004; 5(6): 451-463.

7. J. Compton. Nucleic acid sequence-based amplification. Nature. 1991; 350(6313): 91-92.

8. Mader, U. Riehle, T. Brandstetter, E. Stickeler, A. zur Hausen,J. R\ühe. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Analytical and Bioanalytical Chemistry. 2010; 397(8): 3533-3541.

9. Heim, I. M. Grumbach, S. Zeuke,B. Top. Highly sensitive detection of gene expression of an intronless gene: amplification of mRNA, but not genomic DNA by nucleic acid sequence based amplification (NASBA). Nucleic Acids Research. 1998; 26(9): 2250-2251.

10. Lagunavicius, E. Merkiene, Z. Kiveryte, A. Savaneviciute, V. Zimbaite-Ruskuliene, T. Radzvilavicius,A. Janulaitis. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA. RNA. 2009; 15(5): 765-771.

11. E. Merkiene, E. Gaidamaviciute, L. Riauba, A. Janulaitis,A. Lagunavicius. Direct detection of RNA in vitro and in situ by target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNA sequences distanced far from the 3′-end. RNA. 2010; 16(8): 1508-1515.

12. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino,T. Hase. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000; 28(12): e63-e63.

13. T. C. Cardoso, H. F. Ferrari, L. C. Bregano, C. Silva-Frade, A. C. G. Rosa,A. L. Andrade. Visual detection of turkey coronavirus RNA in tissues and feces by reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with hydroxynaphthol blue dye. Molecular and Cellular Probes. 2010; 24(6): 415-417.

14. Y. Zhao, L. Zhou,Z. Tang. Cleavage-based signal amplification of RNA. Nat Commun. 2013; 4(1493.

15. V. E. Anisimova, D. V. Rebrikov, D. A. Shagin, V. B. Kozhemyako, N. I. Menzorova, D. B. Staroverov, R. Ziganshin, L. L. Vagner, V. A. Rasskazov, S. A. Lukyanov,A. S. Shcheglov. Isolation, characterization and molecular cloning of duplex-specific nuclease from the hepatopancreas of the Kamchatka crab. BMC Biochem. 2008; 9(14.

16. D. A. Shagin, D. V. Rebrikov, V. B. Kozhemyako, I. M. Altshuler, A. S. Shcheglov, P. A. Zhulidov, E. A. Bogdanova, D. B. Staroverov, V. A. Rasskazov,S. Lukyanov. A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res. 2002; 12(12): 1935-1942.

17. B.-C. Yin, Y.-Q. Liu,B.-C. Ye. One-Step, Multiplexed Fluorescence Detection of microRNAs Based on Duplex-Specific Nuclease Signal Amplification. Journal of the American Chemical Society. 2012; 134(11): 5064-5067.

18. P. A. Zhulidov, E. A. Bogdanova, A. S. Shcheglov, L. L. Vagner, G. L. Khaspekov, V. B. Kozhemyako, M. V. Matz, E. Meleshkevitch, L. L. Moroz, S. A. Lukyanov,D. A. Shagin. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research. 2004; 32(3): e37-e37.

19. E. A. Bogdanova, E. V. Barsova, I. A. Shagina, A. Scheglov, V. Anisimova, L. L. Vagner, S. A. Lukyanov,D. A. Shagin. Normalization of full-length-enriched cDNA. Methods Mol Biol. 2011; 729(85-98.

20. D. C. Christodoulou, J. M. Gorham, D. S. Herman,J. G. Seidman. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease. Curr Protoc Mol Biol. 2011; Chapter 4(Unit4 12.

21. Shagina, E. Bogdanova, I. Z. Mamedov, Y. Lebedev, S. Lukyanov,D. Shagin. Normalization of genomic DNA using duplex-specific nuclease. Biotechniques. 2010; 48(6): 455-459.

22. E. A. Bogdanova, I. A. Shagina, E. Mudrik, I. Ivanov, P. Amon, L. L. Vagner, S. A. Lukyanov,D. A. Shagin. DSN depletion is a simple method to remove selected transcripts from cDNA populations. Molecular Biotechnology. 2009; 41(3): 247-253.

23. E. A. Bogdanova, I. A. Shagina, Y. G. Yanushevich, L. L. Vagner, S. A. Lukyanov,D. A. Shagin. Preparation of prokaryotic cDNA for full-scale transcriptome analysis. Russian Journal of Bioorganic Chemistry. 2011; 37(6): 775-778.

24. H. Yi, Y. J. Cho, S. Won, J. E. Lee, H. Jin Yu, S. Kim, G. P. Schroth, S. Luo,J. Chun. Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res. 2011; 39(20): e140.

25. R. H. Peng, A. S. Xiong, Y. Xue, X. Li, J. G. Liu, B. Cai,Q. H. Yao. Kamchatka crab duplex-specific nuclease-mediated transcriptome subtraction method for identifying long cDNAs of differentially expressed genes. Anal Biochem. 2008; 372(2): 148-155.

26. F. Swennenhuis, B. Foulk, F. A. W. Coumans,L. W. M. M. Terstappen. Construction of repeat-free fluorescence in situ hybridization probes. Nucleic Acids Research. 2012; 40(3): e20-e20.

27. Y. Zhao, H. Hoshiyama, J. W. Shay,W. E. Wright. Quantitative telomeric overhang determination using a double-strand specific nuclease. Nucleic Acids Research. 2008; 36(3): e14-e14.

28. Y. Zhao, J. W. Shay,W. E. Wright. Telomere G-overhang length measurement method 1: the DSN method. Methods Mol Biol. 2011; 735(47-54.

29. M. Liu, M. Yuan, X. Lou, H. Mao, D. Zheng, R. Zou, N. Zou, X. Tang,J. Zhao. Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles. Biosens Bioelectron. 2011; 26(11): 4294-4300.

30. Z. Kapikian, R. G. Wyatt, R. Dolin, T. S. Thornhill, A. R. Kalica,R. M. Chanock. Visualization by Immune Electron Microscopy of a 27-nm Particle Associated with Acute Infectious Nonbacterial Gastroenteritis. Journal of Virology. 1972; 10(5): 1075-1081.

31. P. R. Lambden, E. O. Caul, C. R. Ashley,I. N. Clarke. Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science. 1993; 259(5094): 516-519.

32. P. R. Lambden, B. Liu,I. N. Clarke. A conserved sequence motif at the 5' terminus of the Southampton virus genome is characteristic of the Caliciviridae. Virus Genes. 1995; 10(2): 149-152.

33. X. Jiang, M. Wang, K. Wang,M. K. Estes. Sequence and genomic organization of Norwalk virus. Virology. 1993; 195(1): 51-61.

34. N. Xi, D. Y. Graham, K. N. Wang,M. K. Estes. Norwalk virus genome cloning and characterization. Science. 1990; 250(4987): 1580-1583.

35. R. L. Fankhauser, S. S. Monroe, J. S. Noel, C. D. Humphrey, J. S. Bresee, U. D. Parashar, T. Ando,R. I. Glass. Epidemiologic and molecular trends of "Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. J Infect Dis. 2002; 186(1): 1-7.

36. S. M. Green, P. R. Lambden, E. O. Caul, C. R. Ashley,I. N. Clarke. Capsid diversity in small round-structured viruses: molecular characterization of an antigenically distinct human enteric calicivirus. Virus Res. 1995; 37(3): 271-283.

37. S. M. Karst, C. E. Wobus, M. Lay, J. Davidson,H. W. t. Virgin. STAT1-dependent innate immunity to a Norwalk-like virus. Science. 2003; 299(5612): 1575-1578.

38. S. L. Oliver, A. M. Dastjerdi, S. Wong, L. El-Attar, C. Gallimore, D. W. Brown, J. Green,J. C. Bridger. Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (Norwalk-like viruses) unlikely to be of risk to humans. J Virol. 2003; 77(4): 2789-2798.

39. J. Vinje,M. P. Koopmans. Simultaneous detection and genotyping of "Norwalk-like viruses" by oligonucleotide array in a reverse line blot hybridization format. J Clin Microbiol. 2000; 38(7): 2595-2601.

40. de Wit, M. P. Koopmans, L. M. Kortbeek, W. J. Wannet, J. Vinje, F. van Leusden, A. I. Bartelds,Y. T. van Duynhoven. Sensor, a population-based cohort study on gastroenteritis in the Netherlands: incidence and etiology. Am J Epidemiol. 2001; 154(7): 666-674.

41. E. Scallan, R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M. A. Widdowson, S. L. Roy, J. L. Jones,P. M. Griffin. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis. 2011; 17(1): 7-15.

42. M. Patel, M. A. Widdowson, R. I. Glass, K. Akazawa, J. Vinje,U. D. Parashar. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis. 2008; 14(8): 1224-1231.

43. O’Ryan, M. Riera-Montes, B. Lopman. Norovirus in Latin America: Systematic Review and Meta-Analysis. Pediatr Infect Dis J. 2016; Published Ahead of Print.

44. K. Pringle, B. Lopman, E. Vega, J. Vinje, U. Parashar, A. Hall. Noroviruses: epidemiology, immunity and prospects for prevention. Future Microbiology. 2015; 10(1): 53-67.

45. F. Kowalzik, M. Riera-Montes, T. Verstraeten, F. Zepp. The Burden of Norovirus Disease in Children in the European Union. 2015. 34(3): 229-234

46. J. Mans, G. E. Armah, A. D. Steele, M. B. Taylor. Norovirus Epidemiology in Africa: A Review. PLoS ONE, 2016; 11(4): e0146280.

47. S. M. Ahmed, A. J. Hall, A. E. Robinson, L. Verhoef, P. Premkumar, U. D. Parashar, M. Koopmans,B. A. Lopman. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. The Lancet Infectious Diseases. 2014; 14(8): 725-730.

48. Lopman, A. J. Hall, A. T. Curns,U. D. Parashar. Increasing rates of gastroenteritis hospital discharges in US adults and the contribution of norovirus, 1996-2007. Clin Infect Dis. 2011; 52(4): 466-474.

49. J. Hall, A. T. Curns, L. C. McDonald, U. D. Parashar,B. A. Lopman. The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999-2007. Clin Infect Dis. 2012; 55(2): 216-223.

50. F. Teunis, C. L. Moe, P. Liu, S. E. Miller, L. Lindesmith, R. S. Baric, J. Le Pendu,R. L. Calderon. Norwalk virus: how infectious is it? J Med Virol. 2008; 80(8): 1468-1476.

51. T. Halperin, M. Yavzori, A. Amitai, E. Klement, R. Kayouf, I. Grotto, M. Huerta, L. A. Hadley, S. S. Monroe, D. Cohen,N. Orr. Molecular analysis of noroviruses involved in acute gastroenteritis outbreaks in military units in Israel, 1999-2004. Eur J Clin Microbiol Infect Dis. 2005; 24(10): 697-700.

52. E. L. Yee, H. Palacio, R. L. Atmar, U. Shah, C. Kilborn, M. Faul, T. E. Gavagan, R. D. Feigin, J. Versalovic, F. H. Neill, A. L. Panlilio, M. Miller, J. Spahr,R. I. Glass. Widespread outbreak of norovirus gastroenteritis among evacuees of Hurricane Katrina residing in a large "megashelter" in Houston, Texas: lessons learned for prevention. Clin Infect Dis. 2007; 44(8): 1032-1039.

53. L. Verhoef, E. Depoortere, I. Boxman, E. Duizer, Y. van Duynhoven, J. Harris, C. Johnsen, A. Kroneman, S. Le Guyader, W. Lim, L. Maunula, H. Meldal, R. Ratcliff, G. Reuter, E. Schreier, J. Siebenga, K. Vainio, C. Varela, H. Vennema,M. Koopmans. Emergence of New Norovirus Variants on Spring Cruise Ships and Prediction of Winter Epidemics. Emerging Infectious Disease journal. 2008; 14(2): 238.

54. S. R. Seitz, J. S. Leon, K. J. Schwab, G. M. Lyon, M. Dowd, M. McDaniels, G. Abdulhafid, M. L. Fernandez, L. C. Lindesmith, R. S. Baric,C. L. Moe. Norovirus Infectivity in Humans and Persistence in Water. Applied and Environmental Microbiology. 2011; 77(19): 6884-6888.

55. J. L. Hyde, S. V. Sosnovtsev, K. Y. Green, C. Wobus, H. W. Virgin,J. M. Mackenzie. Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. J Virol. 2009; 83(19): 9709-9719.

56. S. Taube, A. Kolawole, M. Höhne, J. Wilkinson, S. Handley, J. Perry, L. Thackray, R. Akkina, C.Wobus.A Mouse Model for Human Norovirus.mBio. 2013; 4(4): e00450-13

57. Khamrin, A. Thongprachum, S. Okitsu, N. Maneekarn, S. Hayakawa,H. Ushijima. Comparison of three rapid tests for detection of norovirus in stool samples of acute gastroenteritis pediatric patients. Journal of Tropical Pediatrics. 2014; 60(6): 481-483.

58. Derrington, F. Moore, D. Thorley,T. Constantino. Evaluation of Immunochromatographic Test Kits For the Detection of Norovirus in Faecal Specimens. Pathology - Journal of the RCPA. 2014; 46(S100).

59. L. Atmar,M. K. Estes. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev. 2001; 14(1): 15-37.

60. M. S. Plantenga, B. Shiferaw, W. E. Keene, C. Biggs, J. M. Terry, L. Grenz,P. R. Cieslak. Specimen Collection and Confirmation of Norovirus Outbreaks. Emerging Infectious Diseases. 2011; 17(8): 1553-1555.

61. H. C. P. Santos, L. C. Turones, F. S. Fiaccadori, D. d. D. de Paula Cardoso,M. B. de Lima Dias. Screening of Fecal Samples From Asymptomatic Children, For Norovirus Detection, Using a Third Generation Enzyme Immunoassay Commercial Kit. Revista de Patologia Tropical. 2014; 43(2): 143-149.

62. G. Lennon, N. Reidy, P. J. Collins, L. Gunn, P. V. Coyle, B. Cryan, S. Fanning,H. O’Shea. A comparison of the efficiency of ELISA and selected primer sets to detect Norovirus isolates in southern Ireland over a four-year period (2002-2006): variation in detection rates and evidence for continuing predominance of NoV GII.4 genotype. Archives of Virology. 2014; 159(7): 1697-1705.

63. F.-R. Lin, Y.-H. Shen, C.-W. Fang, S.-S. Shie, C.-G. Huang, S. Yang, S.-L. Yang, K.-C. Tsao, Y.-C. Huang, M.-W. Lai,C.-J. Chen. Incidence of and Factors Associated with False Positives in Laboratory Diagnosis of Norovirus Infection by Amplification of the RNA-Dependent RNA Polymerase Gene. PLoS ONE. 2014; 9(9): e109876.

64. N. L. Dunbar, L. D. Bruggink,J. A. Marshall. Evaluation of the RIDAGENE real-time PCR assay for the detection of GI and GII norovirus. Diagn Microbiol Infect Dis. 2014; 79(3): 317-321.

65. K. Ambert-Balay, P. Pothier. Evaluation of 4 immuno-chromatographic tests for rapid detection of norovirus in faecal samples. Journal of Clinical Virology. 2013; 56(3): 278-282.

66. V. Costantini, L. Grenz, A. Fritzinger, D. Lewis, C. Biggs, A. Hale,J. Vinj\é. Diagnostic Accuracy and Analytical Sensitivity of IDEIA Norovirus Assay for Routine Screening of Human Norovirus. Journal of Clinical Microbiology. 2010; 48(8): 2770-2778.

67. N. Shigemoto, Y. Tanizawa, T. Matsuo, N. Sakamaki, Y. Ohiro, S. Takayasu,S. Fukuda. Clinical evaluation of a bioluminescent enzyme immunoassay for detecting norovirus in fecal specimens from patients with acute gastroenteritis. Journal of Medical Virology. 2014; 86(7): 1219-1225.

68. K. Hanaki, F. Ike, A. Kajita, W. Yasuno, M. Yanagiba, M. Goto, K. Sakai, Y. Ami,S. Kyuwa. Detection of murine norovirus by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2014; 204(17-24.

69. J. Luo, Z. Xu, K. Nie, X. Ding, L. Guan, J. Wang, Y. Xian, X. Wu,X. Ma. Visual detection of norovirus genogroup II by reverse transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye. Food Environ Virol. 2014; 6(3): 196-201.

70. Hong, J. Kwon, D. Kim,S. Yang. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosensors and Bioelectronics. 2015; 64(0): 338-344.

71. J. Pratt, I.J. MacRae. The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Journal of Biological Chemistry. 2009; 284(27): 17897-17901.

72. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker,P. Schuster. Fast folding and comparison of RNA secondary structures. Monatshefte f\ür Chemie / Chemical Monthly. 1994; 125(2): 167-188.

73. M. Hoehne,E. Schreier. Detection of Norovirus genogroup I and II by multiplex real-time RT- PCR using a 3'-minor groove binder-DNA probe. BMC Infectious Diseases. 2006; 6(69-69.

74. M. L. Stewart, A. P. Grollman,M.-T. Huang. Aurintricarboxylic acid: inhibitor of initiation of protein synthesis. Proceedings of the National Academy of Sciences. 1971; 68(1): 97-101.

75. Y. Yap, X. Zhang, A. Andonov,R. He. Structural analysis of inhibition mechanisms of Aurintricarboxylic Acid on SARS-CoV polymerase and other proteins. Computational Biology and Chemistry. 2005; 29(3): 212-219.

76. G. J. Bartlett, C. T. Porter, N. Borkakoti, J. M. Thornton. Analysis of catalytic residues in enzyme active sites. Journal of Molecular Biology. 2002; 324(1): 105-121.

77. Vogelstein, K. W. Kinzler. Digital PCR. Proceedings of the National Academy of Sciences. 1999; 96(16): 9236-9241.

78. Bustin. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000; 25(2): 169-193.

79. S. G. Lee, S. H. Lee, S. W. Park, C. I. Suh, W. H. Jheong, S. Oh,S. Y. Paik. Standardized positive controls for detection of norovirus by reverse transcription PCR. Virol J. 2011; 8(260.

80. R. I. Glass, U. D. Parashar, M. K. Estes. Norovirus Gastroenteritis. New England Journal of Medicine. 2009; 361(18): 1776-1785.

81. R. Brennan, B. W. Matthews. The helix-turn-helix DNA binding motif. J Biol Chem. 1989; 264(4): 1903-1906.

82. H. Ohlendorf, B. W. Matthews. Structural studies of protein-nucleic acid interactions. Annu Rev Biophys Bioeng. 1983; 12(259-284.

83. Y. Takeda, D. H. Ohlendorf, W. F. Anderson,B. W. Matthews. DNA-binding proteins. Science. 1983; 221(4615): 1020-1026.

84. O. Pabo, R. T. Sauer. Protein-DNA recognition. Annu Rev Biochem. 1984; 53(293-321.

85. R. Schleif. DNA binding by proteins. Science. 1988; 241(4870): 1182-1187.

86. R. Zhang, A. Joachimiak, C. Lawson, R. Schevitz, Z. Otwinowski, P. Sigler. The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA aflinity. Nature. 1987; 327(591-597.

87. Z. Otwinowski, R. Schevitz, R. Zhang, C. Lawson, A. Joachimiak, R. Marmorstein, B. Luisi, P. Sigler. Crystal structure of trp represser/operator complex at atomic resolution. Nature. 1988; 335(6188): 321-329.

88. Yang, R. Yan, A. Roy, D. Xu, J. Poisson,Y. Zhang. The I-TASSER Suite: protein structure and function prediction. Nature methods. 2015; 12(1): 7-8.

89. Roy, A. Kucukural, Y. Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols. 2010; 5(4): 725-738.

90. Y. Zhang. I-TASSER server for protein 3D structure prediction. BMC bioinformatics. 2008; 9(1):40

Article Metrics

Similar Articles